Normalized defining polynomial
\( x^{18} - 6 x^{17} - 54 x^{16} + 311 x^{15} + 1245 x^{14} - 6516 x^{13} - 15735 x^{12} + 72450 x^{11} + 116451 x^{10} - 471036 x^{9} - 501531 x^{8} + 1853487 x^{7} + 1168166 x^{6} - 4350009 x^{5} - 1103103 x^{4} + 5597467 x^{3} - 428712 x^{2} - 3027996 x + 1081576 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(190432952662359521950134031359837=3^{27}\cdot 7^{12}\cdot 71^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{284} a^{16} - \frac{13}{284} a^{15} + \frac{7}{284} a^{14} + \frac{21}{71} a^{13} - \frac{121}{284} a^{12} + \frac{47}{284} a^{11} + \frac{31}{142} a^{10} - \frac{55}{142} a^{9} + \frac{57}{284} a^{8} - \frac{103}{284} a^{7} - \frac{31}{71} a^{6} + \frac{85}{284} a^{5} + \frac{75}{284} a^{4} + \frac{17}{71} a^{3} + \frac{67}{284} a^{2} - \frac{63}{142} a + \frac{34}{71}$, $\frac{1}{7385873404078430477142132958688444} a^{17} + \frac{9061902935136097813385742241467}{7385873404078430477142132958688444} a^{16} - \frac{1518086304652771305213798403404547}{7385873404078430477142132958688444} a^{15} - \frac{90753108416676582975880300852467}{3692936702039215238571066479344222} a^{14} - \frac{2710565160389119178067571990547367}{7385873404078430477142132958688444} a^{13} - \frac{717118596703705929235263461958825}{7385873404078430477142132958688444} a^{12} + \frac{339540201263078565467755294430162}{1846468351019607619285533239672111} a^{11} - \frac{408100064820577794903752798176148}{1846468351019607619285533239672111} a^{10} + \frac{2126974888020967121767043243945969}{7385873404078430477142132958688444} a^{9} + \frac{3436519203314621768841160796717661}{7385873404078430477142132958688444} a^{8} + \frac{196805905841126229946431346938103}{3692936702039215238571066479344222} a^{7} + \frac{280444647066203553555134249704471}{7385873404078430477142132958688444} a^{6} - \frac{1097581733182071231611631990282225}{7385873404078430477142132958688444} a^{5} + \frac{1358564422380389092874876526606713}{3692936702039215238571066479344222} a^{4} - \frac{1155014110724694742838678884808863}{7385873404078430477142132958688444} a^{3} - \frac{1366030949089563590668622131351277}{3692936702039215238571066479344222} a^{2} + \frac{1347419059544616190400948688412523}{3692936702039215238571066479344222} a - \frac{890431427677992617121430946022540}{1846468351019607619285533239672111}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26223924303.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times A_4^2$ (as 18T109):
| A solvable group of order 288 |
| The 32 conjugacy class representatives for $C_2\times A_4^2$ |
| Character table for $C_2\times A_4^2$ is not computed |
Intermediate fields
| 3.3.3969.2, 3.3.3969.1, \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{7})^+\), 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 71 | Data not computed | ||||||