Normalized defining polynomial
\( x^{18} - 45 x^{16} - x^{15} + 756 x^{14} + 57 x^{13} - 5953 x^{12} - 1089 x^{11} + 23253 x^{10} + 8945 x^{9} - 46602 x^{8} - 30060 x^{7} + 42927 x^{6} + 43173 x^{5} - 7479 x^{4} - 21483 x^{3} - 8262 x^{2} - 972 x - 27 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(187933304498364210515293279521=3^{24}\cdot 13^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{9} - \frac{1}{3} a^{6} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{10} - \frac{1}{3} a^{7} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{11} - \frac{1}{3} a^{8} - \frac{1}{3} a^{5}$, $\frac{1}{9} a^{15} - \frac{1}{9} a^{12} + \frac{1}{3} a^{10} - \frac{4}{9} a^{9} - \frac{1}{3} a^{7} - \frac{1}{9} a^{6} - \frac{1}{3} a^{3}$, $\frac{1}{9} a^{16} - \frac{1}{9} a^{13} + \frac{1}{3} a^{11} - \frac{4}{9} a^{10} - \frac{1}{3} a^{8} - \frac{1}{9} a^{7} - \frac{1}{3} a^{4}$, $\frac{1}{21690327925000470987} a^{17} - \frac{1164900734750970862}{21690327925000470987} a^{16} - \frac{85560837471631630}{21690327925000470987} a^{15} - \frac{3376903538722448023}{21690327925000470987} a^{14} + \frac{1833216720104258998}{21690327925000470987} a^{13} + \frac{383031098794732201}{21690327925000470987} a^{12} - \frac{6519194142840169444}{21690327925000470987} a^{11} + \frac{948002908251045850}{21690327925000470987} a^{10} - \frac{55213259451987881}{21690327925000470987} a^{9} + \frac{7310550570323231600}{21690327925000470987} a^{8} - \frac{10391988078963612350}{21690327925000470987} a^{7} + \frac{3300478606106847025}{21690327925000470987} a^{6} + \frac{822208543515376456}{7230109308333490329} a^{5} - \frac{1640744348386008434}{7230109308333490329} a^{4} - \frac{647999283816941335}{2410036436111163443} a^{3} + \frac{183901667152804444}{2410036436111163443} a^{2} - \frac{979901791704081518}{2410036436111163443} a - \frac{853674537034239746}{2410036436111163443}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 637998345.319 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_3:S_3.C_2$ (as 18T44):
| A solvable group of order 108 |
| The 18 conjugacy class representatives for $C_3\times C_3:S_3.C_2$ |
| Character table for $C_3\times C_3:S_3.C_2$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.3.169.1, \(\Q(\zeta_{13})^+\), 6.6.187388721.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.15.3 | $x^{9} + 9 x^{6} + 72 x^{3} + 27$ | $3$ | $3$ | $15$ | $S_3\times C_3$ | $[5/2]_{2}^{3}$ |
| 3.9.9.6 | $x^{9} + 3 x^{7} + 3 x^{6} + 18 x^{4} + 54$ | $3$ | $3$ | $9$ | $S_3\times C_3$ | $[3/2]_{2}^{3}$ | |
| $13$ | 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 13.12.11.4 | $x^{12} - 832$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |