Normalized defining polynomial
\( x^{18} - 102 x^{16} - 160 x^{15} + 3693 x^{14} + 10566 x^{13} - 50868 x^{12} - 218556 x^{11} + 150759 x^{10} + 1637522 x^{9} + 1419528 x^{8} - 3120024 x^{7} - 5455849 x^{6} - 857994 x^{5} + 2308524 x^{4} + 626660 x^{3} - 347892 x^{2} - 55974 x + 17858 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1809732592884732626462062694400000000=2^{18}\cdot 3^{24}\cdot 5^{8}\cdot 29^{3}\cdot 37^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $103.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 29, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7}$, $\frac{1}{4} a^{14} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{15} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{76} a^{16} + \frac{3}{76} a^{15} - \frac{9}{76} a^{14} + \frac{2}{19} a^{13} + \frac{4}{19} a^{12} + \frac{7}{19} a^{10} - \frac{5}{38} a^{9} + \frac{17}{76} a^{8} + \frac{35}{76} a^{7} - \frac{25}{76} a^{6} - \frac{1}{2} a^{5} + \frac{5}{38} a^{4} - \frac{1}{2} a^{3} + \frac{7}{19} a^{2} - \frac{7}{19} a - \frac{7}{38}$, $\frac{1}{968066452121470392550530694602547641605270644} a^{17} - \frac{2267388460667815809059884914755341126996503}{968066452121470392550530694602547641605270644} a^{16} + \frac{250106380093077117646961022093818250342809}{968066452121470392550530694602547641605270644} a^{15} + \frac{61238349195462398298025997537686689069443611}{968066452121470392550530694602547641605270644} a^{14} + \frac{96788379468655006511678781483693569123866281}{484033226060735196275265347301273820802635322} a^{13} - \frac{22870422975843069351379447416546783889547647}{242016613030367598137632673650636910401317661} a^{12} - \frac{41859628397505057233159347911157368756117485}{484033226060735196275265347301273820802635322} a^{11} - \frac{215932523908805553650220597062900859748707973}{484033226060735196275265347301273820802635322} a^{10} + \frac{55481837862006637971110411768325349653988899}{968066452121470392550530694602547641605270644} a^{9} - \frac{24378705901837776885148760909917351571370201}{50950865901130020660554247084344612716066876} a^{8} + \frac{391590702727703228860578307804071254777714345}{968066452121470392550530694602547641605270644} a^{7} + \frac{103231585048332541074636850185472494851288807}{968066452121470392550530694602547641605270644} a^{6} + \frac{100086452519915905932859366811593357469747977}{484033226060735196275265347301273820802635322} a^{5} + \frac{35595741390583178005060256601363894597101189}{242016613030367598137632673650636910401317661} a^{4} - \frac{96305595787764782324668108193320203365761415}{242016613030367598137632673650636910401317661} a^{3} - \frac{26955890166245664046915915625896774638254326}{242016613030367598137632673650636910401317661} a^{2} - \frac{20327341309791681126523140888967053849859434}{242016613030367598137632673650636910401317661} a + \frac{226391131216403455381083025715005981968146659}{484033226060735196275265347301273820802635322}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11616243686200 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times (C_3\times A_4):S_3$ (as 18T156):
| A solvable group of order 432 |
| The 38 conjugacy class representatives for $C_2\times (C_3\times A_4):S_3$ |
| Character table for $C_2\times (C_3\times A_4):S_3$ is not computed |
Intermediate fields
| 3.3.148.1, 6.6.2540864.1, 9.9.1076763238920000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.8 | $x^{6} + 2 x + 2$ | $6$ | $1$ | $6$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ |
| 2.6.6.8 | $x^{6} + 2 x + 2$ | $6$ | $1$ | $6$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| 2.6.6.8 | $x^{6} + 2 x + 2$ | $6$ | $1$ | $6$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.12.8.1 | $x^{12} - 30 x^{9} + 175 x^{6} + 500 x^{3} + 5000$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $29$ | 29.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 29.6.3.1 | $x^{6} - 58 x^{4} + 841 x^{2} - 219501$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 29.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $37$ | 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 37.6.0.1 | $x^{6} - x + 20$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |