Normalized defining polynomial
\( x^{18} - 6 x^{17} - 42 x^{16} + 232 x^{15} + 515 x^{14} - 2716 x^{13} - 2617 x^{12} + 14323 x^{11} + 5233 x^{10} - 37698 x^{9} - 418 x^{8} + 49453 x^{7} - 9734 x^{6} - 30769 x^{5} + 9810 x^{4} + 7729 x^{3} - 2996 x^{2} - 460 x + 200 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1766000400360784868524139223996521=7^{10}\cdot 569^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $70.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 569$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{28} a^{15} + \frac{1}{14} a^{14} - \frac{3}{28} a^{13} + \frac{1}{28} a^{12} - \frac{3}{28} a^{11} + \frac{1}{14} a^{10} - \frac{1}{7} a^{9} - \frac{3}{28} a^{8} + \frac{3}{7} a^{7} - \frac{1}{4} a^{6} + \frac{1}{28} a^{5} - \frac{13}{28} a^{4} + \frac{3}{14} a^{3} + \frac{5}{14} a^{2} + \frac{5}{14} a + \frac{1}{7}$, $\frac{1}{28} a^{16} + \frac{1}{14} a^{12} - \frac{3}{14} a^{11} + \frac{3}{14} a^{10} - \frac{1}{14} a^{9} + \frac{1}{7} a^{8} + \frac{1}{7} a^{7} + \frac{2}{7} a^{6} + \frac{3}{14} a^{5} - \frac{5}{14} a^{4} - \frac{1}{14} a^{3} - \frac{3}{28} a^{2} + \frac{3}{7} a - \frac{2}{7}$, $\frac{1}{216105817320127097014540} a^{17} + \frac{1653643709488859491969}{216105817320127097014540} a^{16} + \frac{1223799030615913294019}{108052908660063548507270} a^{15} + \frac{4637066213443792327438}{54026454330031774253635} a^{14} + \frac{869016011362689832401}{10805290866006354850727} a^{13} - \frac{18500035001344208450883}{108052908660063548507270} a^{12} - \frac{10634379273448178709428}{54026454330031774253635} a^{11} - \frac{17303407478752257802921}{108052908660063548507270} a^{10} - \frac{4055220571940472919111}{108052908660063548507270} a^{9} + \frac{1282863422805559488401}{108052908660063548507270} a^{8} - \frac{3327699783655046559181}{7718064904290253464805} a^{7} - \frac{4386236236933528726683}{54026454330031774253635} a^{6} - \frac{5533814415585251590591}{15436129808580506929610} a^{5} - \frac{4452368859006397346851}{54026454330031774253635} a^{4} - \frac{20811935186951312015159}{43221163464025419402908} a^{3} - \frac{6169330695700304331673}{30872259617161013859220} a^{2} - \frac{433993790199767244072}{7718064904290253464805} a + \frac{2558735431954552526380}{10805290866006354850727}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 283969563865 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$He_3:C_2$ (as 18T22):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $He_3:C_2$ |
| Character table for $He_3:C_2$ |
Intermediate fields
| \(\Q(\sqrt{569}) \), 6.6.9026780441.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{5}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{5}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 569 | Data not computed | ||||||