Properties

Label 18.18.1585459367...8125.1
Degree $18$
Signature $[18, 0]$
Discriminant $5^{11}\cdot 13^{16}\cdot 47^{4}$
Root discriminant $61.50$
Ramified primes $5, 13, 47$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 18T201

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![125, 1025, -305, -10410, 2560, 39490, -26150, -53535, 58064, 16138, -41445, 11371, 6561, -3756, 59, 283, -40, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 5*x^17 - 40*x^16 + 283*x^15 + 59*x^14 - 3756*x^13 + 6561*x^12 + 11371*x^11 - 41445*x^10 + 16138*x^9 + 58064*x^8 - 53535*x^7 - 26150*x^6 + 39490*x^5 + 2560*x^4 - 10410*x^3 - 305*x^2 + 1025*x + 125)
 
gp: K = bnfinit(x^18 - 5*x^17 - 40*x^16 + 283*x^15 + 59*x^14 - 3756*x^13 + 6561*x^12 + 11371*x^11 - 41445*x^10 + 16138*x^9 + 58064*x^8 - 53535*x^7 - 26150*x^6 + 39490*x^5 + 2560*x^4 - 10410*x^3 - 305*x^2 + 1025*x + 125, 1)
 

Normalized defining polynomial

\( x^{18} - 5 x^{17} - 40 x^{16} + 283 x^{15} + 59 x^{14} - 3756 x^{13} + 6561 x^{12} + 11371 x^{11} - 41445 x^{10} + 16138 x^{9} + 58064 x^{8} - 53535 x^{7} - 26150 x^{6} + 39490 x^{5} + 2560 x^{4} - 10410 x^{3} - 305 x^{2} + 1025 x + 125 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[18, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(158545936763456454575718798828125=5^{11}\cdot 13^{16}\cdot 47^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $61.50$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 13, 47$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{5} a^{16} - \frac{2}{5} a^{13} - \frac{1}{5} a^{12} - \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{1}{5} a^{9} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6}$, $\frac{1}{206744659545025518072124175} a^{17} + \frac{103954749178948272468365}{8269786381801020722884967} a^{16} - \frac{10004416160455355798483748}{41348931909005103614424835} a^{15} - \frac{102907997650525685957201267}{206744659545025518072124175} a^{14} + \frac{29993831771268758299638624}{206744659545025518072124175} a^{13} + \frac{19135956375545642142051039}{206744659545025518072124175} a^{12} - \frac{69755758328662621759187394}{206744659545025518072124175} a^{11} + \frac{98645866047302038538151301}{206744659545025518072124175} a^{10} + \frac{14945688601830617235667947}{41348931909005103614424835} a^{9} - \frac{46010293240649909296755637}{206744659545025518072124175} a^{8} - \frac{45988544767321299191317296}{206744659545025518072124175} a^{7} - \frac{18837145926980581826892338}{41348931909005103614424835} a^{6} + \frac{3050323416868040753188569}{8269786381801020722884967} a^{5} - \frac{5203142548158868089411362}{41348931909005103614424835} a^{4} - \frac{3568299136006571400751373}{41348931909005103614424835} a^{3} - \frac{14835241792035816991994512}{41348931909005103614424835} a^{2} - \frac{1801729577541694455224191}{41348931909005103614424835} a + \frac{1250638657973989138360089}{8269786381801020722884967}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $17$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 23831092092.4 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T201:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 648
The 26 conjugacy class representatives for t18n201
Character table for t18n201 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 3.3.169.1, 6.6.3570125.1, 9.9.45048729067225.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $18$ $18$ R ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ R $18$ ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ $18$ R ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.6.5.1$x^{6} - 5$$6$$1$$5$$D_{6}$$[\ ]_{6}^{2}$
5.6.3.1$x^{6} - 10 x^{4} + 25 x^{2} - 500$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
13Data not computed
$47$47.2.0.1$x^{2} - x + 13$$1$$2$$0$$C_2$$[\ ]^{2}$
47.2.0.1$x^{2} - x + 13$$1$$2$$0$$C_2$$[\ ]^{2}$
47.2.0.1$x^{2} - x + 13$$1$$2$$0$$C_2$$[\ ]^{2}$
47.2.0.1$x^{2} - x + 13$$1$$2$$0$$C_2$$[\ ]^{2}$
47.2.0.1$x^{2} - x + 13$$1$$2$$0$$C_2$$[\ ]^{2}$
47.4.2.1$x^{4} + 1175 x^{2} + 373321$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
47.4.2.1$x^{4} + 1175 x^{2} + 373321$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$