Normalized defining polynomial
\( x^{18} - 5 x^{17} - 43 x^{16} + 310 x^{15} + 23 x^{14} - 4187 x^{13} + 8010 x^{12} + 13898 x^{11} - 59680 x^{10} + 35569 x^{9} + 95171 x^{8} - 148735 x^{7} + 24283 x^{6} + 70453 x^{5} - 28177 x^{4} - 11891 x^{3} + 3454 x^{2} + 1452 x + 121 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15837982522574661576175934102569=11^{8}\cdot 43^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $54.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{11} a^{14} - \frac{2}{11} a^{13} + \frac{1}{11} a^{12} + \frac{4}{11} a^{11} - \frac{3}{11} a^{10} - \frac{3}{11} a^{9} - \frac{3}{11} a^{8} - \frac{1}{11} a^{6} + \frac{3}{11} a^{5} + \frac{2}{11} a^{4} - \frac{2}{11} a^{3} + \frac{1}{11} a^{2}$, $\frac{1}{22} a^{15} - \frac{3}{22} a^{13} + \frac{3}{11} a^{12} + \frac{5}{22} a^{11} - \frac{9}{22} a^{10} - \frac{9}{22} a^{9} - \frac{3}{11} a^{8} - \frac{1}{22} a^{7} + \frac{1}{22} a^{6} + \frac{4}{11} a^{5} + \frac{1}{11} a^{4} + \frac{4}{11} a^{3} - \frac{9}{22} a^{2} - \frac{1}{2}$, $\frac{1}{2706} a^{16} + \frac{1}{451} a^{15} - \frac{5}{2706} a^{14} - \frac{170}{451} a^{13} + \frac{259}{2706} a^{12} - \frac{69}{902} a^{11} + \frac{449}{2706} a^{10} - \frac{97}{451} a^{9} + \frac{63}{902} a^{8} + \frac{193}{2706} a^{7} - \frac{124}{1353} a^{6} + \frac{18}{41} a^{5} - \frac{100}{451} a^{4} - \frac{1145}{2706} a^{3} - \frac{424}{1353} a^{2} + \frac{91}{246} a - \frac{2}{123}$, $\frac{1}{2594928196454040414} a^{17} + \frac{135558399160043}{2594928196454040414} a^{16} - \frac{7848387190401679}{1297464098227020207} a^{15} - \frac{83960581507917205}{2594928196454040414} a^{14} - \frac{504956693419618384}{1297464098227020207} a^{13} - \frac{421346874359500421}{1297464098227020207} a^{12} - \frac{173974385070972589}{2594928196454040414} a^{11} + \frac{1123756032149354}{10216252741945041} a^{10} - \frac{22824093453839735}{432488032742340069} a^{9} + \frac{222708702614250077}{1297464098227020207} a^{8} - \frac{142012254242102678}{432488032742340069} a^{7} - \frac{4517443095380063}{63290931620830254} a^{6} - \frac{61397076936330919}{432488032742340069} a^{5} - \frac{1003897041036976643}{2594928196454040414} a^{4} + \frac{5720553349716157}{26211395923778186} a^{3} + \frac{36204869249878990}{117951281657001837} a^{2} + \frac{10418758478526071}{21445687574000334} a - \frac{4722034540754023}{21445687574000334}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9042270276.65 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times A_4$ (as 18T31):
| A solvable group of order 72 |
| The 12 conjugacy class representatives for $S_3\times A_4$ |
| Character table for $S_3\times A_4$ |
Intermediate fields
| 3.3.1849.1, 3.3.473.1, 6.6.413674921.1, 9.9.361790571383417.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $43$ | 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 43.6.5.1 | $x^{6} - 43$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 43.6.5.1 | $x^{6} - 43$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |