Normalized defining polynomial
\( x^{18} - 8 x^{17} - 34 x^{16} + 406 x^{15} + 5 x^{14} - 7212 x^{13} + 10378 x^{12} + 54168 x^{11} - 126883 x^{10} - 165800 x^{9} + 611032 x^{8} + 53790 x^{7} - 1264603 x^{6} + 612252 x^{5} + 830632 x^{4} - 718892 x^{3} + 140512 x^{2} + 9184 x - 3136 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1503855547469708539369307904147456=2^{20}\cdot 3^{14}\cdot 7^{10}\cdot 101^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{2} a^{7} - \frac{1}{6} a^{6} + \frac{1}{6} a^{5} + \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{12} a^{11} - \frac{1}{6} a^{9} + \frac{1}{6} a^{8} + \frac{1}{6} a^{7} - \frac{1}{3} a^{5} - \frac{1}{6} a^{4} - \frac{5}{12} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{12} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{3}$, $\frac{1}{24} a^{13} - \frac{1}{24} a^{12} - \frac{1}{12} a^{10} + \frac{1}{12} a^{9} - \frac{1}{6} a^{8} - \frac{1}{4} a^{7} - \frac{1}{6} a^{6} + \frac{7}{24} a^{5} + \frac{7}{24} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{24} a^{14} - \frac{1}{24} a^{12} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{8} a^{6} + \frac{1}{4} a^{5} - \frac{3}{8} a^{4} - \frac{1}{4} a^{3} + \frac{1}{6} a^{2} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{48} a^{15} - \frac{1}{48} a^{13} + \frac{1}{24} a^{10} - \frac{1}{24} a^{9} + \frac{5}{24} a^{8} + \frac{5}{16} a^{7} - \frac{1}{24} a^{6} - \frac{13}{48} a^{5} - \frac{11}{24} a^{4} - \frac{1}{6} a^{3} + \frac{5}{12} a^{2} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{144} a^{16} - \frac{1}{144} a^{15} - \frac{1}{144} a^{14} - \frac{1}{144} a^{13} - \frac{1}{24} a^{12} + \frac{1}{72} a^{11} - \frac{1}{9} a^{9} + \frac{13}{144} a^{8} + \frac{67}{144} a^{7} - \frac{1}{48} a^{6} + \frac{49}{144} a^{5} - \frac{1}{6} a^{4} - \frac{17}{36} a^{3} + \frac{17}{36} a^{2} - \frac{2}{9} a + \frac{1}{9}$, $\frac{1}{128320562564887183491249648} a^{17} - \frac{27642277183576248405167}{64160281282443591745624824} a^{16} - \frac{45189136778579205573307}{128320562564887183491249648} a^{15} + \frac{14447694151524318170657}{1145719308615064138314729} a^{14} + \frac{196994849480150254861141}{21386760427481197248541608} a^{13} + \frac{1178656853625654965098967}{32080140641221795872812412} a^{12} - \frac{725403679750672182557035}{21386760427481197248541608} a^{11} - \frac{712802930389762146584327}{64160281282443591745624824} a^{10} + \frac{12289406405166724421195971}{128320562564887183491249648} a^{9} - \frac{7088719380865423267231667}{32080140641221795872812412} a^{8} - \frac{11228338083559160597240729}{42773520854962394497083216} a^{7} - \frac{25391273136951284976771763}{64160281282443591745624824} a^{6} - \frac{1935963575882742452602137}{7128920142493732416180536} a^{5} + \frac{31076256545847974525710697}{64160281282443591745624824} a^{4} - \frac{690372176158772939872888}{8020035160305448968203103} a^{3} - \frac{7732342679050582175718925}{16040070320610897936406206} a^{2} - \frac{780062910011092432985035}{16040070320610897936406206} a - \frac{108785669977728751366160}{381906436205021379438243}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 970263885439 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3:S_3:S_4$ (as 18T154):
| A solvable group of order 432 |
| The 20 conjugacy class representatives for $C_3:S_3:S_4$ |
| Character table for $C_3:S_3:S_4$ |
Intermediate fields
| 3.3.404.1, 6.6.7997584.1, 9.9.5539939488857088.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.8.3 | $x^{6} + 2 x^{3} + 6$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ | |
| 2.6.8.3 | $x^{6} + 2 x^{3} + 6$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ | |
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.12.12.23 | $x^{12} + 21 x^{11} + 21 x^{10} + 63 x^{9} + 36 x^{8} + 54 x^{7} + 90 x^{6} + 81 x^{3} - 81$ | $3$ | $4$ | $12$ | $S_3 \times C_4$ | $[3/2]_{2}^{4}$ | |
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.12.10.6 | $x^{12} - 217 x^{6} + 11907$ | $6$ | $2$ | $10$ | $C_{12}$ | $[\ ]_{6}^{2}$ | |
| $101$ | $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |