Normalized defining polynomial
\( x^{18} - 2 x^{17} - 42 x^{16} + 78 x^{15} + 680 x^{14} - 1150 x^{13} - 5337 x^{12} + 7992 x^{11} + 20953 x^{10} - 26642 x^{9} - 38251 x^{8} + 38696 x^{7} + 26450 x^{6} - 19276 x^{5} - 4165 x^{4} + 2054 x^{3} + 53 x^{2} - 40 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1488294338429317924379721203712=2^{18}\cdot 3^{9}\cdot 19^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(228=2^{2}\cdot 3\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{228}(1,·)$, $\chi_{228}(131,·)$, $\chi_{228}(73,·)$, $\chi_{228}(11,·)$, $\chi_{228}(83,·)$, $\chi_{228}(85,·)$, $\chi_{228}(23,·)$, $\chi_{228}(25,·)$, $\chi_{228}(157,·)$, $\chi_{228}(35,·)$, $\chi_{228}(169,·)$, $\chi_{228}(47,·)$, $\chi_{228}(49,·)$, $\chi_{228}(119,·)$, $\chi_{228}(121,·)$, $\chi_{228}(61,·)$, $\chi_{228}(215,·)$, $\chi_{228}(191,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{37} a^{16} - \frac{15}{37} a^{15} + \frac{6}{37} a^{14} - \frac{15}{37} a^{13} - \frac{7}{37} a^{12} - \frac{1}{37} a^{11} - \frac{3}{37} a^{10} + \frac{1}{37} a^{9} - \frac{5}{37} a^{8} - \frac{10}{37} a^{7} - \frac{16}{37} a^{6} + \frac{7}{37} a^{5} - \frac{1}{37} a^{4} - \frac{16}{37} a^{3} + \frac{1}{37} a^{2} - \frac{10}{37} a - \frac{1}{37}$, $\frac{1}{5895184715274613315301251739} a^{17} + \frac{11364961519041214338917871}{5895184715274613315301251739} a^{16} + \frac{524462888200035116250848850}{5895184715274613315301251739} a^{15} - \frac{1038413124976726648240608816}{5895184715274613315301251739} a^{14} + \frac{2553049152655949071621836494}{5895184715274613315301251739} a^{13} - \frac{2725950507008945780243101596}{5895184715274613315301251739} a^{12} - \frac{993889325932283711369031646}{5895184715274613315301251739} a^{11} + \frac{1175767669748679325120218566}{5895184715274613315301251739} a^{10} - \frac{527845586311427606343403031}{5895184715274613315301251739} a^{9} - \frac{100495570222810866008428191}{5895184715274613315301251739} a^{8} + \frac{2672462168653905844282874823}{5895184715274613315301251739} a^{7} - \frac{551506653931246034594202430}{5895184715274613315301251739} a^{6} + \frac{351013468754412786345824347}{5895184715274613315301251739} a^{5} + \frac{2425957254026241082414890027}{5895184715274613315301251739} a^{4} - \frac{819685142869367623467201276}{5895184715274613315301251739} a^{3} + \frac{1141567858137289380088739412}{5895184715274613315301251739} a^{2} + \frac{2347186764967134712754781572}{5895184715274613315301251739} a - \frac{2259716292336653450103366149}{5895184715274613315301251739}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1824767825.56 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), 3.3.361.1, 6.6.225194688.1, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | $18$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{18}$ | $18$ | $18$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 19 | Data not computed | ||||||