Normalized defining polynomial
\( x^{18} - 7 x^{17} - 477 x^{16} + 2580 x^{15} + 96946 x^{14} - 368364 x^{13} - 10774715 x^{12} + 24785442 x^{11} + 700028791 x^{10} - 696537758 x^{9} - 26370561888 x^{8} - 2128102298 x^{7} + 531816604330 x^{6} + 488362579857 x^{5} - 4540455488533 x^{4} - 6842969625882 x^{3} + 4393485098751 x^{2} + 6578218070638 x - 1347265689967 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14494774105115134246729616047541332754922448=2^{4}\cdot 193^{7}\cdot 229^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $249.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 193, 229$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{16} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} + \frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{6009817074391344758736293040878983969023205970183530777710412320618705510723142271713708570823468} a^{17} - \frac{305654833036434299266266721245097440038614242640172093132432659605628944713867232944539073920655}{6009817074391344758736293040878983969023205970183530777710412320618705510723142271713708570823468} a^{16} + \frac{22621408579558662585419267538730541829194586878922721641260185393795947655544206241593333077809}{3004908537195672379368146520439491984511602985091765388855206160309352755361571135856854285411734} a^{15} - \frac{188010751837724066890321334736248435821465693794899042432831617697881708224257787588206104824967}{3004908537195672379368146520439491984511602985091765388855206160309352755361571135856854285411734} a^{14} + \frac{30302120270505063828279490080270449495318551262880628998778966992553409265072437303323007159685}{3004908537195672379368146520439491984511602985091765388855206160309352755361571135856854285411734} a^{13} - \frac{73279556000038024561791086202403170772091215378411233268847043864353930294370259341175943562769}{3004908537195672379368146520439491984511602985091765388855206160309352755361571135856854285411734} a^{12} - \frac{1826607904772043475637570250350739696892301283789657983517152390931718936063242317781466514867779}{6009817074391344758736293040878983969023205970183530777710412320618705510723142271713708570823468} a^{11} - \frac{618595521518168487587441707023986694398734466524543807940285083425808853630437113318169327120841}{1502454268597836189684073260219745992255801492545882694427603080154676377680785567928427142705867} a^{10} + \frac{141810518180370229619231053771174806159719497945903853116716145051118836890212332870720019162111}{1502454268597836189684073260219745992255801492545882694427603080154676377680785567928427142705867} a^{9} + \frac{2032907910032235635953067638954037457332679753774560718396293588909675633183307363068784882413435}{6009817074391344758736293040878983969023205970183530777710412320618705510723142271713708570823468} a^{8} + \frac{1754434371624331771308481793652766762068055204013325062984203367647890047584930131471422679749745}{6009817074391344758736293040878983969023205970183530777710412320618705510723142271713708570823468} a^{7} - \frac{631440186361915449216970844723976385022322722352780836066702917100810947560792622807335907969943}{1502454268597836189684073260219745992255801492545882694427603080154676377680785567928427142705867} a^{6} - \frac{1730415525510818869046676117757121035809551907683369296577862208861857921078131478793757455696321}{6009817074391344758736293040878983969023205970183530777710412320618705510723142271713708570823468} a^{5} - \frac{58236336692368493973905702369338965403004226175347129092160340898964899505979408787843591784269}{3004908537195672379368146520439491984511602985091765388855206160309352755361571135856854285411734} a^{4} - \frac{305813880935443816947205815089201196897996450932529023503544699835810736361012746888488176845255}{6009817074391344758736293040878983969023205970183530777710412320618705510723142271713708570823468} a^{3} - \frac{920931813587806809076639952683285270415860054114368875148933167152470585707735094422926974182467}{3004908537195672379368146520439491984511602985091765388855206160309352755361571135856854285411734} a^{2} - \frac{573516300049709606437533764032297529357089569410496081083567403101761146598818918887292882068571}{3004908537195672379368146520439491984511602985091765388855206160309352755361571135856854285411734} a - \frac{829706316713098846056852738402025725160681968510207920563175559473080969984862095455015072292653}{6009817074391344758736293040878983969023205970183530777710412320618705510723142271713708570823468}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5048442421220000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 80 conjugacy class representatives for t18n782 are not computed |
| Character table for t18n782 is not computed |
Intermediate fields
| 3.3.229.1, 9.9.1789291325044.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 193 | Data not computed | ||||||
| 229 | Data not computed | ||||||