Normalized defining polynomial
\( x^{18} - 80 x^{16} + 2399 x^{14} - 35671 x^{12} + 294157 x^{10} - 1411309 x^{8} + 3984308 x^{6} - 6446621 x^{4} + 5470524 x^{2} - 1874161 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(141711284133771727403008823394304=2^{18}\cdot 19^{16}\cdot 37^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{37} a^{12} - \frac{6}{37} a^{10} - \frac{6}{37} a^{8} - \frac{3}{37} a^{6} + \frac{7}{37} a^{4} - \frac{18}{37} a^{2}$, $\frac{1}{37} a^{13} - \frac{6}{37} a^{11} - \frac{6}{37} a^{9} - \frac{3}{37} a^{7} + \frac{7}{37} a^{5} - \frac{18}{37} a^{3}$, $\frac{1}{1369} a^{14} - \frac{6}{1369} a^{12} + \frac{586}{1369} a^{10} - \frac{521}{1369} a^{8} - \frac{400}{1369} a^{6} + \frac{648}{1369} a^{4} + \frac{15}{37} a^{2}$, $\frac{1}{1369} a^{15} - \frac{6}{1369} a^{13} + \frac{586}{1369} a^{11} - \frac{521}{1369} a^{9} - \frac{400}{1369} a^{7} + \frac{648}{1369} a^{5} + \frac{15}{37} a^{3}$, $\frac{1}{78248100015361937} a^{16} + \frac{16353117708539}{78248100015361937} a^{14} - \frac{130571123747396}{78248100015361937} a^{12} + \frac{3334458578399149}{78248100015361937} a^{10} - \frac{218786346614397}{78248100015361937} a^{8} + \frac{32588184050742162}{78248100015361937} a^{6} + \frac{934033607307394}{2114813513928701} a^{4} - \frac{12929105546451}{57157121998073} a^{2} + \frac{133025320438}{1544787081029}$, $\frac{1}{78248100015361937} a^{17} + \frac{16353117708539}{78248100015361937} a^{15} - \frac{130571123747396}{78248100015361937} a^{13} + \frac{3334458578399149}{78248100015361937} a^{11} - \frac{218786346614397}{78248100015361937} a^{9} + \frac{32588184050742162}{78248100015361937} a^{7} + \frac{934033607307394}{2114813513928701} a^{5} - \frac{12929105546451}{57157121998073} a^{3} + \frac{133025320438}{1544787081029} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16383382024.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 576 |
| The 16 conjugacy class representatives for t18n177 |
| Character table for t18n177 |
Intermediate fields
| 3.3.361.1, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $19$ | 19.9.8.8 | $x^{9} - 19$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |
| 19.9.8.8 | $x^{9} - 19$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |
| 37 | Data not computed | ||||||