Normalized defining polynomial
\( x^{18} - 6 x^{17} - 33 x^{16} + 238 x^{15} + 321 x^{14} - 3486 x^{13} - 360 x^{12} + 24222 x^{11} - 10056 x^{10} - 84708 x^{9} + 53535 x^{8} + 145404 x^{7} - 96853 x^{6} - 115686 x^{5} + 64119 x^{4} + 38114 x^{3} - 11610 x^{2} - 4596 x - 71 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14166424145858741301073711988736=2^{27}\cdot 3^{27}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(504=2^{3}\cdot 3^{2}\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{504}(1,·)$, $\chi_{504}(323,·)$, $\chi_{504}(193,·)$, $\chi_{504}(457,·)$, $\chi_{504}(11,·)$, $\chi_{504}(337,·)$, $\chi_{504}(275,·)$, $\chi_{504}(25,·)$, $\chi_{504}(347,·)$, $\chi_{504}(491,·)$, $\chi_{504}(289,·)$, $\chi_{504}(155,·)$, $\chi_{504}(169,·)$, $\chi_{504}(107,·)$, $\chi_{504}(179,·)$, $\chi_{504}(361,·)$, $\chi_{504}(121,·)$, $\chi_{504}(443,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{2} a^{4} - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{9} - \frac{1}{2} a^{5} - \frac{1}{4} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{10} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{11} - \frac{1}{2} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{573531463012} a^{16} + \frac{19170608041}{286765731506} a^{15} - \frac{44507220027}{573531463012} a^{14} + \frac{3054893791}{286765731506} a^{13} + \frac{10586483009}{143382865753} a^{12} - \frac{2345649787}{286765731506} a^{11} + \frac{95979907729}{573531463012} a^{10} - \frac{14871133259}{286765731506} a^{9} + \frac{56324393061}{573531463012} a^{8} - \frac{15037611953}{286765731506} a^{7} + \frac{17643651921}{143382865753} a^{6} + \frac{4930139023}{286765731506} a^{5} - \frac{66849995417}{573531463012} a^{4} - \frac{137765424701}{286765731506} a^{3} - \frac{248086571915}{573531463012} a^{2} - \frac{47587659966}{143382865753} a - \frac{53910210429}{573531463012}$, $\frac{1}{44125565918952206308} a^{17} - \frac{5674529}{22062782959476103154} a^{16} - \frac{602401436088625975}{11031391479738051577} a^{15} - \frac{1311800010204671415}{11031391479738051577} a^{14} + \frac{2951721304933790113}{44125565918952206308} a^{13} + \frac{1163931158161106172}{11031391479738051577} a^{12} + \frac{1852769137520198802}{11031391479738051577} a^{11} - \frac{1823921197817683295}{22062782959476103154} a^{10} - \frac{1328107092870992425}{11031391479738051577} a^{9} + \frac{122584543249769927}{11031391479738051577} a^{8} - \frac{162542258428188617}{11031391479738051577} a^{7} + \frac{2367084600449536879}{22062782959476103154} a^{6} + \frac{4553563477497868375}{44125565918952206308} a^{5} + \frac{2142582079574140069}{22062782959476103154} a^{4} - \frac{2835405341032201962}{11031391479738051577} a^{3} - \frac{4999501644401867588}{11031391479738051577} a^{2} + \frac{1673435740929749511}{22062782959476103154} a - \frac{1380552258441031413}{11031391479738051577}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6797133055.24 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{6}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{7})^+\), 3.3.3969.1, 3.3.3969.2, 6.6.10077696.1, 6.6.33191424.1, 6.6.24196548096.1, 6.6.24196548096.2, 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||