Normalized defining polynomial
\( x^{18} - x^{17} - 89 x^{16} + 151 x^{15} + 2903 x^{14} - 6917 x^{13} - 41170 x^{12} + 128965 x^{11} + 226382 x^{10} - 1014925 x^{9} - 226188 x^{8} + 3486165 x^{7} - 1433009 x^{6} - 5139518 x^{5} + 3540642 x^{4} + 2797609 x^{3} - 2029989 x^{2} - 568486 x + 269671 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(140206156168767266840209098851131489=19^{6}\cdot 1129^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $89.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 1129$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{33} a^{16} + \frac{13}{33} a^{15} + \frac{2}{33} a^{14} - \frac{14}{33} a^{13} - \frac{16}{33} a^{12} + \frac{7}{33} a^{11} - \frac{16}{33} a^{10} - \frac{2}{33} a^{9} + \frac{1}{3} a^{8} - \frac{4}{33} a^{7} - \frac{7}{33} a^{6} + \frac{14}{33} a^{5} - \frac{3}{11} a^{4} - \frac{13}{33} a^{3} + \frac{16}{33} a^{2} - \frac{1}{3} a + \frac{13}{33}$, $\frac{1}{528888496857712284763239216989503436996841250029} a^{17} + \frac{10256144438782548360979621017362885261396117}{10370362683484554603200768960578498764643946079} a^{16} - \frac{197989899765099425186073413893193177027541653963}{528888496857712284763239216989503436996841250029} a^{15} - \frac{66311783734581211079396266822736243571913295602}{528888496857712284763239216989503436996841250029} a^{14} - \frac{50389177696709936047031699128397776401201405413}{528888496857712284763239216989503436996841250029} a^{13} - \frac{90200611383640392947928655229334054857661504259}{528888496857712284763239216989503436996841250029} a^{12} + \frac{69709829772315930329395693771987755705571461634}{528888496857712284763239216989503436996841250029} a^{11} - \frac{252980319936041968018409931869612399681373132643}{528888496857712284763239216989503436996841250029} a^{10} + \frac{251991506194729217671752908415934544866505044966}{528888496857712284763239216989503436996841250029} a^{9} - \frac{17312658328501283845320171673010766373379373640}{176296165619237428254413072329834478998947083343} a^{8} + \frac{68854051795334291775608214447103803293185504340}{176296165619237428254413072329834478998947083343} a^{7} - \frac{71735323816928741418093685776405282181395340520}{176296165619237428254413072329834478998947083343} a^{6} + \frac{12474455694691496713601693947762498401317909855}{48080772441610207705749019726318494272440113639} a^{5} - \frac{102713713659220641267081664824894550576534138921}{528888496857712284763239216989503436996841250029} a^{4} - \frac{20497099662769303582027629378452734459850778184}{528888496857712284763239216989503436996841250029} a^{3} + \frac{21871864910490210868875234692407057468006779328}{176296165619237428254413072329834478998947083343} a^{2} + \frac{2604782455435403624692133812041577655567639113}{58765388539745809418137690776611492999649027781} a - \frac{3404938893821648863862312939208165050890476662}{31111088050453663809602306881735496293931838237}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 367625216248 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:D_9$ (as 18T39):
| A solvable group of order 72 |
| The 9 conjugacy class representatives for $C_2^2:D_9$ |
| Character table for $C_2^2:D_9$ |
Intermediate fields
| 3.3.1129.1, 6.6.519504157729.1, 9.9.1624709678881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 1129 | Data not computed | ||||||