Properties

Label 18.18.1370237548...3792.1
Degree $18$
Signature $[18, 0]$
Discriminant $2^{42}\cdot 3^{9}\cdot 3547^{4}$
Root discriminant $53.68$
Ramified primes $2, 3, 3547$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 18T888

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2, -14, 33, 388, 218, -2792, -3036, 8156, 8914, -11562, -8701, 8380, 1808, -2264, 44, 224, -28, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 6*x^17 - 28*x^16 + 224*x^15 + 44*x^14 - 2264*x^13 + 1808*x^12 + 8380*x^11 - 8701*x^10 - 11562*x^9 + 8914*x^8 + 8156*x^7 - 3036*x^6 - 2792*x^5 + 218*x^4 + 388*x^3 + 33*x^2 - 14*x - 2)
 
gp: K = bnfinit(x^18 - 6*x^17 - 28*x^16 + 224*x^15 + 44*x^14 - 2264*x^13 + 1808*x^12 + 8380*x^11 - 8701*x^10 - 11562*x^9 + 8914*x^8 + 8156*x^7 - 3036*x^6 - 2792*x^5 + 218*x^4 + 388*x^3 + 33*x^2 - 14*x - 2, 1)
 

Normalized defining polynomial

\( x^{18} - 6 x^{17} - 28 x^{16} + 224 x^{15} + 44 x^{14} - 2264 x^{13} + 1808 x^{12} + 8380 x^{11} - 8701 x^{10} - 11562 x^{9} + 8914 x^{8} + 8156 x^{7} - 3036 x^{6} - 2792 x^{5} + 218 x^{4} + 388 x^{3} + 33 x^{2} - 14 x - 2 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[18, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(13702375484107625992444855713792=2^{42}\cdot 3^{9}\cdot 3547^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $53.68$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 3547$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{15} + \frac{1}{3} a^{14} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{7889837298828721053} a^{17} + \frac{542266417033666072}{7889837298828721053} a^{16} - \frac{3283771116049137790}{7889837298828721053} a^{15} - \frac{3456380637880024270}{7889837298828721053} a^{14} - \frac{729176717224987996}{2629945766276240351} a^{13} - \frac{3817334493134617943}{7889837298828721053} a^{12} + \frac{605914243773517630}{2629945766276240351} a^{11} - \frac{464420427324836322}{2629945766276240351} a^{10} + \frac{2186898896495109793}{7889837298828721053} a^{9} + \frac{1013635622267753722}{2629945766276240351} a^{8} - \frac{2975566743663139690}{7889837298828721053} a^{7} - \frac{3328762736902708450}{7889837298828721053} a^{6} - \frac{659222273791255718}{7889837298828721053} a^{5} - \frac{3376326098798017174}{7889837298828721053} a^{4} - \frac{377767239338401266}{2629945766276240351} a^{3} + \frac{995056689684899998}{7889837298828721053} a^{2} + \frac{372446173191775198}{7889837298828721053} a + \frac{1228493052273618895}{7889837298828721053}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $17$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 14204295753.6 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T888:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 362880
The 36 conjugacy class representatives for t18n888
Character table for t18n888 is not computed

Intermediate fields

\(\Q(\sqrt{3}) \), 9.9.29682796068864.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R $18$ $18$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ $18$ $18$ ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ $18$ ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.10.5.1$x^{10} - 18 x^{6} + 81 x^{2} - 243$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
3547Data not computed