Normalized defining polynomial
\( x^{18} - 72 x^{16} - 4 x^{15} + 1932 x^{14} + 204 x^{13} - 25080 x^{12} - 5904 x^{11} + 169518 x^{10} + 75028 x^{9} - 580464 x^{8} - 402456 x^{7} + 841186 x^{6} + 816576 x^{5} - 240000 x^{4} - 429608 x^{3} - 80412 x^{2} + 30312 x + 7972 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(136343282447952855576836891027177472=2^{37}\cdot 3^{24}\cdot 37^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $89.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{2} a^{13}$, $\frac{1}{2} a^{14}$, $\frac{1}{10} a^{15} + \frac{1}{10} a^{14} + \frac{1}{5} a^{13} - \frac{1}{10} a^{12} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} - \frac{2}{5}$, $\frac{1}{50} a^{16} - \frac{1}{50} a^{15} + \frac{1}{5} a^{14} + \frac{1}{10} a^{13} + \frac{6}{25} a^{12} + \frac{11}{25} a^{11} + \frac{2}{5} a^{10} + \frac{4}{25} a^{9} - \frac{2}{5} a^{8} - \frac{2}{25} a^{7} + \frac{2}{5} a^{6} + \frac{3}{25} a^{4} + \frac{2}{5} a^{3} + \frac{8}{25} a^{2} - \frac{2}{25} a - \frac{6}{25}$, $\frac{1}{274564578358361722425183235417012750} a^{17} + \frac{2173557434475069209483305880592447}{274564578358361722425183235417012750} a^{16} + \frac{3422109045574625640493556075611556}{137282289179180861212591617708506375} a^{15} + \frac{2893985765410299503330751378459331}{27456457835836172242518323541701275} a^{14} - \frac{40611852777091086554853253555106623}{274564578358361722425183235417012750} a^{13} - \frac{66600238973075653180266627831698027}{274564578358361722425183235417012750} a^{12} + \frac{19456830602616275997849831937382863}{137282289179180861212591617708506375} a^{11} - \frac{50732734374912504885627707175991316}{137282289179180861212591617708506375} a^{10} - \frac{1599378773956021653699375257927118}{137282289179180861212591617708506375} a^{9} - \frac{64957695588932782746450883166269232}{137282289179180861212591617708506375} a^{8} + \frac{44352632114430962277678184149726689}{137282289179180861212591617708506375} a^{7} - \frac{1517633186063829778603179873193124}{27456457835836172242518323541701275} a^{6} - \frac{20238771810064334725897567726446797}{137282289179180861212591617708506375} a^{5} - \frac{29397887970788144500564252091942971}{137282289179180861212591617708506375} a^{4} - \frac{39962910565566813940313767049495037}{137282289179180861212591617708506375} a^{3} + \frac{52925614028335014446708364991832657}{137282289179180861212591617708506375} a^{2} - \frac{63028235580091562075760024623774402}{137282289179180861212591617708506375} a + \frac{58611556666901416859701012989311837}{137282289179180861212591617708506375}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1334754627370 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6912 |
| The 30 conjugacy class representatives for t18n518 |
| Character table for t18n518 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.220521111330816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ |
| 2.12.26.87 | $x^{12} + 4 x^{11} + 2 x^{10} + 2 x^{8} + 2 x^{6} + 2 x^{4} + 4 x^{3} + 4 x^{2} + 2$ | $12$ | $1$ | $26$ | 12T48 | $[4/3, 4/3, 2, 3]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| 37 | Data not computed | ||||||