Normalized defining polynomial
\( x^{18} - 9 x^{17} - 24 x^{16} + 384 x^{15} - 33 x^{14} - 6540 x^{13} + 5677 x^{12} + 57606 x^{11} - 65787 x^{10} - 282822 x^{9} + 343368 x^{8} + 778449 x^{7} - 922425 x^{6} - 1149072 x^{5} + 1244082 x^{4} + 819388 x^{3} - 744636 x^{2} - 218364 x + 156356 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(135906679889509709971359671520264192=2^{16}\cdot 3^{32}\cdot 47^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $89.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{9} + \frac{1}{3} a^{6} - \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{10} + \frac{1}{3} a^{7} - \frac{1}{3} a$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{11} + \frac{1}{3} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{6} a^{15} - \frac{1}{6} a^{14} - \frac{1}{6} a^{11} - \frac{1}{2} a^{9} + \frac{1}{3} a^{8} - \frac{1}{2} a^{7} + \frac{1}{3} a^{6} - \frac{1}{2} a^{4} - \frac{1}{6} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{114} a^{16} + \frac{7}{114} a^{15} + \frac{3}{19} a^{14} - \frac{4}{57} a^{13} - \frac{5}{38} a^{12} + \frac{2}{19} a^{11} - \frac{35}{114} a^{10} + \frac{7}{19} a^{9} - \frac{1}{38} a^{8} - \frac{2}{19} a^{7} + \frac{28}{57} a^{6} + \frac{15}{38} a^{5} + \frac{17}{114} a^{4} + \frac{10}{57} a^{3} + \frac{7}{19} a^{2} - \frac{2}{19} a + \frac{17}{57}$, $\frac{1}{19336879577958825660832827890538} a^{17} + \frac{35932954807524251877503543252}{9668439788979412830416413945269} a^{16} - \frac{729349687939573255833497189203}{19336879577958825660832827890538} a^{15} + \frac{344339489565297343732876853917}{3222813262993137610138804648423} a^{14} - \frac{3063903472928023649027455090501}{19336879577958825660832827890538} a^{13} - \frac{6456834022117513776517481467}{1017730504103096087412254099502} a^{12} - \frac{2511068695611253389415799282695}{6445626525986275220277609296846} a^{11} + \frac{9247627176497182318669240595585}{19336879577958825660832827890538} a^{10} + \frac{2240713238898336022741376821151}{19336879577958825660832827890538} a^{9} + \frac{2186309828647892481482120838833}{19336879577958825660832827890538} a^{8} - \frac{3655450406820874918824891682198}{9668439788979412830416413945269} a^{7} + \frac{46061470417440419663251531}{6445626525986275220277609296846} a^{6} - \frac{2701487069445786152754404733878}{9668439788979412830416413945269} a^{5} - \frac{4454955308065210303738837507669}{19336879577958825660832827890538} a^{4} - \frac{2692542931409369462894447778364}{9668439788979412830416413945269} a^{3} + \frac{1466643034816742117066995260941}{9668439788979412830416413945269} a^{2} - \frac{776583374183471360881335988211}{9668439788979412830416413945269} a - \frac{1301252052489267966837751235160}{3222813262993137610138804648423}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 510402720815 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3:S_4$ (as 18T66):
| A solvable group of order 144 |
| The 18 conjugacy class representatives for $C_2\times C_3:S_4$ |
| Character table for $C_2\times C_3:S_4$ |
Intermediate fields
| 3.3.45684.1, 3.3.564.1, 3.3.45684.2, 3.3.11421.1, 6.6.24522577308.1, 9.9.13443473060864064.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.8.3 | $x^{6} + 2 x^{3} + 6$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $3$ | 3.6.10.2 | $x^{6} + 9$ | $3$ | $2$ | $10$ | $D_{6}$ | $[5/2]_{2}^{2}$ |
| 3.12.22.67 | $x^{12} + 99 x^{11} + 117 x^{10} - 114 x^{9} - 81 x^{8} + 9 x^{7} - 15 x^{6} + 54 x^{5} - 108 x^{4} + 45 x^{3} - 81 x^{2} - 108 x - 72$ | $6$ | $2$ | $22$ | $D_6$ | $[5/2]_{2}^{2}$ | |
| 47 | Data not computed | ||||||