Normalized defining polynomial
\( x^{18} - x^{17} - 56 x^{16} + 56 x^{15} + 1312 x^{14} - 1312 x^{13} - 16643 x^{12} + 16643 x^{11} + 123406 x^{10} - 123406 x^{9} - 536825 x^{8} + 536825 x^{7} + 1291507 x^{6} - 1291507 x^{5} - 1450991 x^{4} + 1450991 x^{3} + 418894 x^{2} - 418894 x + 44917 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12922465537100419689226617716849=11^{9}\cdot 19^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(209=11\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{209}(1,·)$, $\chi_{209}(65,·)$, $\chi_{209}(10,·)$, $\chi_{209}(45,·)$, $\chi_{209}(208,·)$, $\chi_{209}(21,·)$, $\chi_{209}(23,·)$, $\chi_{209}(100,·)$, $\chi_{209}(32,·)$, $\chi_{209}(144,·)$, $\chi_{209}(98,·)$, $\chi_{209}(164,·)$, $\chi_{209}(199,·)$, $\chi_{209}(109,·)$, $\chi_{209}(111,·)$, $\chi_{209}(177,·)$, $\chi_{209}(186,·)$, $\chi_{209}(188,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{15467} a^{10} - \frac{6479}{15467} a^{9} - \frac{30}{15467} a^{8} + \frac{4796}{15467} a^{7} + \frac{315}{15467} a^{6} + \frac{3237}{15467} a^{5} - \frac{1350}{15467} a^{4} + \frac{4677}{15467} a^{3} + \frac{2025}{15467} a^{2} - \frac{5756}{15467} a - \frac{486}{15467}$, $\frac{1}{15467} a^{11} - \frac{33}{15467} a^{9} - \frac{3970}{15467} a^{8} + \frac{396}{15467} a^{7} + \frac{2478}{15467} a^{6} - \frac{2079}{15467} a^{5} - \frac{3118}{15467} a^{4} + \frac{4455}{15467} a^{3} - \frac{1797}{15467} a^{2} - \frac{2673}{15467} a + \frac{6474}{15467}$, $\frac{1}{15467} a^{12} - \frac{1239}{15467} a^{9} - \frac{594}{15467} a^{8} + \frac{6076}{15467} a^{7} - \frac{7151}{15467} a^{6} - \frac{4566}{15467} a^{5} + \frac{6306}{15467} a^{4} - \frac{2126}{15467} a^{3} + \frac{2284}{15467} a^{2} + \frac{2130}{15467} a - \frac{571}{15467}$, $\frac{1}{15467} a^{13} - \frac{702}{15467} a^{9} - \frac{160}{15467} a^{8} - \frac{4235}{15467} a^{7} - \frac{956}{15467} a^{6} - \frac{4471}{15467} a^{5} - \frac{4340}{15467} a^{4} - \frac{3038}{15467} a^{3} + \frac{5451}{15467} a^{2} - \frac{1968}{15467} a + \frac{1059}{15467}$, $\frac{1}{15467} a^{14} - \frac{1120}{15467} a^{9} + \frac{5639}{15467} a^{8} - \frac{5970}{15467} a^{7} + \frac{121}{15467} a^{6} - \frac{5615}{15467} a^{5} - \frac{7251}{15467} a^{4} - \frac{5766}{15467} a^{3} - \frac{3382}{15467} a^{2} - \frac{2766}{15467} a - \frac{898}{15467}$, $\frac{1}{15467} a^{15} + \frac{3182}{15467} a^{9} + \frac{6831}{15467} a^{8} + \frac{4592}{15467} a^{7} + \frac{6911}{15467} a^{6} - \frac{1089}{15467} a^{5} - \frac{2000}{15467} a^{4} + \frac{7012}{15467} a^{3} + \frac{7052}{15467} a^{2} + \frac{2121}{15467} a - \frac{2975}{15467}$, $\frac{1}{15467} a^{16} + \frac{5498}{15467} a^{9} + \frac{7250}{15467} a^{8} - \frac{3499}{15467} a^{7} + \frac{1936}{15467} a^{6} - \frac{1112}{15467} a^{5} + \frac{2886}{15467} a^{4} + \frac{4092}{15467} a^{3} - \frac{7157}{15467} a^{2} - \frac{311}{15467} a - \frac{248}{15467}$, $\frac{1}{15467} a^{17} - \frac{7176}{15467} a^{9} + \frac{6771}{15467} a^{8} + \frac{4763}{15467} a^{7} - \frac{678}{15467} a^{6} - \frac{7090}{15467} a^{5} + \frac{2232}{15467} a^{4} + \frac{318}{15467} a^{3} + \frac{2479}{15467} a^{2} + \frac{758}{15467} a - \frac{3763}{15467}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3961676166.05 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{209}) \), 3.3.361.1, 6.6.3295687769.1, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | $18$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | $18$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 19 | Data not computed | ||||||