Normalized defining polynomial
\( x^{18} - 3 x^{17} - 84 x^{16} + 273 x^{15} + 2358 x^{14} - 8727 x^{13} - 25149 x^{12} + 118758 x^{11} + 67869 x^{10} - 693201 x^{9} + 318291 x^{8} + 1574322 x^{7} - 1444974 x^{6} - 1310592 x^{5} + 1609968 x^{4} + 345060 x^{3} - 589545 x^{2} - 19575 x + 63075 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1287206634035789519596942809814453125=3^{21}\cdot 5^{12}\cdot 23^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $101.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2}$, $\frac{1}{5} a^{9} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3}$, $\frac{1}{10} a^{10} - \frac{1}{10} a^{8} - \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{2} a^{5} + \frac{1}{10} a^{4} + \frac{1}{5} a^{3} + \frac{3}{10} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{10} a^{11} - \frac{1}{10} a^{9} - \frac{2}{5} a^{7} + \frac{1}{10} a^{6} - \frac{3}{10} a^{5} - \frac{1}{5} a^{4} - \frac{3}{10} a^{3} + \frac{1}{10} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{12} - \frac{1}{10} a^{8} - \frac{1}{10} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{10} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{50} a^{13} + \frac{1}{25} a^{12} + \frac{1}{50} a^{11} - \frac{1}{25} a^{10} - \frac{1}{25} a^{9} - \frac{1}{50} a^{8} + \frac{3}{50} a^{7} + \frac{12}{25} a^{6} - \frac{23}{50} a^{5} - \frac{23}{50} a^{4} - \frac{1}{2} a^{3} + \frac{2}{5} a^{2}$, $\frac{1}{1150} a^{14} + \frac{1}{115} a^{13} - \frac{3}{1150} a^{12} - \frac{27}{575} a^{11} + \frac{11}{575} a^{10} - \frac{67}{1150} a^{9} - \frac{3}{230} a^{8} + \frac{149}{575} a^{7} - \frac{551}{1150} a^{6} - \frac{477}{1150} a^{5} - \frac{89}{1150} a^{4} + \frac{10}{23} a^{3} + \frac{4}{23} a^{2} + \frac{2}{23} a + \frac{9}{23}$, $\frac{1}{1150} a^{15} - \frac{11}{1150} a^{13} + \frac{9}{230} a^{12} - \frac{18}{575} a^{11} - \frac{11}{1150} a^{10} + \frac{11}{1150} a^{9} + \frac{11}{1150} a^{8} - \frac{3}{23} a^{7} - \frac{232}{575} a^{6} - \frac{54}{115} a^{5} - \frac{18}{575} a^{4} + \frac{15}{46} a^{3} - \frac{52}{115} a^{2} + \frac{1}{46} a - \frac{19}{46}$, $\frac{1}{5750} a^{16} - \frac{1}{5750} a^{15} - \frac{1}{2875} a^{14} - \frac{3}{1150} a^{13} + \frac{26}{575} a^{12} + \frac{183}{5750} a^{11} + \frac{41}{2875} a^{10} + \frac{147}{2875} a^{9} + \frac{19}{1150} a^{8} + \frac{377}{1150} a^{7} + \frac{1358}{2875} a^{6} - \frac{431}{5750} a^{5} + \frac{1933}{5750} a^{4} - \frac{521}{1150} a^{3} + \frac{108}{575} a^{2} - \frac{7}{230} a + \frac{43}{230}$, $\frac{1}{313820503898426200188908949250} a^{17} - \frac{1104007819839329090527701}{31382050389842620018890894925} a^{16} + \frac{60285629086381606666594416}{156910251949213100094454474625} a^{15} + \frac{568253430565444163080871}{13644369734714182616909084750} a^{14} + \frac{45556904280632962451356258}{31382050389842620018890894925} a^{13} + \frac{5584061980135910881332343749}{156910251949213100094454474625} a^{12} + \frac{506949684622636657338919859}{12552820155937048007556357970} a^{11} + \frac{3446395050354312594238339448}{156910251949213100094454474625} a^{10} + \frac{9777922587657937232310274222}{156910251949213100094454474625} a^{9} - \frac{619540412358536177531717348}{31382050389842620018890894925} a^{8} - \frac{101064773481708222127144460329}{313820503898426200188908949250} a^{7} - \frac{13501484063828341390288534823}{62764100779685240037781789850} a^{6} - \frac{109922946579523026685707574803}{313820503898426200188908949250} a^{5} + \frac{30940539636129231569433894023}{313820503898426200188908949250} a^{4} + \frac{211865002728427565511148018}{6276410077968524003778178985} a^{3} - \frac{5041539819140663173052853617}{31382050389842620018890894925} a^{2} + \frac{840866217544802763451497243}{6276410077968524003778178985} a - \frac{157206080042139714091499103}{432855867446105103708839930}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15141979627900 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$PSU(3,2)$ (as 18T35):
| A solvable group of order 72 |
| The 6 conjugacy class representatives for $PSU(3,2)$ |
| Character table for $PSU(3,2)$ |
Intermediate fields
| \(\Q(\sqrt{69}) \), 9.9.136583925149390625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $23$ | 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.8.6.1 | $x^{8} + 299 x^{4} + 25921$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| 23.8.6.1 | $x^{8} + 299 x^{4} + 25921$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |