Normalized defining polynomial
\( x^{18} - 6 x^{17} - 36 x^{16} + 226 x^{15} + 483 x^{14} - 3231 x^{13} - 3224 x^{12} + 22752 x^{11} + 12312 x^{10} - 84569 x^{9} - 30768 x^{8} + 164055 x^{7} + 53034 x^{6} - 150630 x^{5} - 50556 x^{4} + 48055 x^{3} + 13995 x^{2} - 2403 x - 181 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12851694105541388560018283203125=3^{24}\cdot 5^{9}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(585=3^{2}\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{585}(256,·)$, $\chi_{585}(1,·)$, $\chi_{585}(451,·)$, $\chi_{585}(196,·)$, $\chi_{585}(391,·)$, $\chi_{585}(139,·)$, $\chi_{585}(334,·)$, $\chi_{585}(79,·)$, $\chi_{585}(16,·)$, $\chi_{585}(529,·)$, $\chi_{585}(274,·)$, $\chi_{585}(211,·)$, $\chi_{585}(469,·)$, $\chi_{585}(406,·)$, $\chi_{585}(94,·)$, $\chi_{585}(289,·)$, $\chi_{585}(484,·)$, $\chi_{585}(61,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{38} a^{15} - \frac{7}{38} a^{14} - \frac{3}{19} a^{13} - \frac{2}{19} a^{12} + \frac{15}{38} a^{10} + \frac{3}{19} a^{9} - \frac{13}{38} a^{8} - \frac{5}{38} a^{7} + \frac{8}{19} a^{6} - \frac{9}{19} a^{5} + \frac{5}{19} a^{4} - \frac{2}{19} a^{3} + \frac{9}{38} a^{2} + \frac{7}{38} a + \frac{5}{19}$, $\frac{1}{38} a^{16} + \frac{1}{19} a^{14} - \frac{4}{19} a^{13} - \frac{9}{38} a^{12} - \frac{2}{19} a^{11} - \frac{3}{38} a^{10} - \frac{9}{38} a^{9} + \frac{9}{19} a^{8} + \frac{9}{19} a^{6} + \frac{17}{38} a^{5} + \frac{9}{38} a^{4} - \frac{1}{2} a^{3} + \frac{13}{38} a^{2} - \frac{17}{38} a - \frac{3}{19}$, $\frac{1}{54349782523295134068331411043698} a^{17} - \frac{175981400420957258119009303963}{54349782523295134068331411043698} a^{16} - \frac{225554826796799699882803980887}{54349782523295134068331411043698} a^{15} - \frac{12188630033024458931355774080015}{54349782523295134068331411043698} a^{14} - \frac{890439303937850391631729766710}{27174891261647567034165705521849} a^{13} + \frac{13003594661388920836117626189497}{54349782523295134068331411043698} a^{12} - \frac{11460364425269473091374145106448}{27174891261647567034165705521849} a^{11} + \frac{7746770318311822627575619017332}{27174891261647567034165705521849} a^{10} + \frac{14136162213773646752397247677165}{54349782523295134068331411043698} a^{9} + \frac{6301209156376652043540350987305}{54349782523295134068331411043698} a^{8} - \frac{25193219672576383545696062908333}{54349782523295134068331411043698} a^{7} - \frac{6894507587265000788612061150491}{27174891261647567034165705521849} a^{6} + \frac{3106686200036035827100519350006}{27174891261647567034165705521849} a^{5} - \frac{5309735403730495039448192244761}{54349782523295134068331411043698} a^{4} - \frac{1241978605503711589514831236719}{54349782523295134068331411043698} a^{3} + \frac{2729730743193676201003644728849}{54349782523295134068331411043698} a^{2} + \frac{26797491965928311036736512853845}{54349782523295134068331411043698} a + \frac{4155576346844099109168295749013}{27174891261647567034165705521849}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3649457632.69 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{9})^+\), 3.3.13689.1, 3.3.13689.2, 3.3.169.1, 6.6.820125.1, 6.6.23423590125.1, 6.6.23423590125.2, 6.6.3570125.1, 9.9.2565164201769.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 13 | Data not computed | ||||||