Normalized defining polynomial
\( x^{18} - 3 x^{17} - 43 x^{16} + 179 x^{15} + 476 x^{14} - 3227 x^{13} + 811 x^{12} + 21655 x^{11} - 36845 x^{10} - 34395 x^{9} + 160783 x^{8} - 137718 x^{7} - 95838 x^{6} + 292831 x^{5} - 267927 x^{4} + 129421 x^{3} - 34619 x^{2} + 4698 x - 239 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(127609123015304468465889942421=7^{12}\cdot 83^{4}\cdot 181^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 83, 181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} - \frac{2}{7} a^{11} + \frac{2}{7} a^{10} - \frac{3}{7} a^{8} + \frac{2}{7} a^{7} + \frac{3}{7} a^{6} - \frac{2}{7} a^{5} - \frac{1}{7} a^{4} - \frac{2}{7} a^{3} - \frac{3}{7} a^{2} - \frac{2}{7} a + \frac{1}{7}$, $\frac{1}{7} a^{13} - \frac{2}{7} a^{11} - \frac{3}{7} a^{10} - \frac{3}{7} a^{9} + \frac{3}{7} a^{8} - \frac{3}{7} a^{6} + \frac{2}{7} a^{5} + \frac{3}{7} a^{4} - \frac{1}{7} a^{2} - \frac{3}{7} a + \frac{2}{7}$, $\frac{1}{7} a^{14} + \frac{1}{7} a^{10} + \frac{3}{7} a^{9} + \frac{1}{7} a^{8} + \frac{1}{7} a^{7} + \frac{1}{7} a^{6} - \frac{1}{7} a^{5} - \frac{2}{7} a^{4} + \frac{2}{7} a^{3} - \frac{2}{7} a^{2} - \frac{2}{7} a + \frac{2}{7}$, $\frac{1}{7} a^{15} + \frac{1}{7} a^{11} + \frac{3}{7} a^{10} + \frac{1}{7} a^{9} + \frac{1}{7} a^{8} + \frac{1}{7} a^{7} - \frac{1}{7} a^{6} - \frac{2}{7} a^{5} + \frac{2}{7} a^{4} - \frac{2}{7} a^{3} - \frac{2}{7} a^{2} + \frac{2}{7} a$, $\frac{1}{7} a^{16} - \frac{2}{7} a^{11} - \frac{1}{7} a^{10} + \frac{1}{7} a^{9} - \frac{3}{7} a^{8} - \frac{3}{7} a^{7} + \frac{2}{7} a^{6} - \frac{3}{7} a^{5} - \frac{1}{7} a^{4} - \frac{2}{7} a^{2} + \frac{2}{7} a - \frac{1}{7}$, $\frac{1}{8483757088811464747} a^{17} - \frac{409069251677859328}{8483757088811464747} a^{16} + \frac{190531787667193783}{8483757088811464747} a^{15} - \frac{411534557495457279}{8483757088811464747} a^{14} - \frac{59122672916997494}{1211965298401637821} a^{13} - \frac{210930240405879927}{8483757088811464747} a^{12} - \frac{2269976867398655187}{8483757088811464747} a^{11} - \frac{3575217649622750580}{8483757088811464747} a^{10} + \frac{596030564167865254}{8483757088811464747} a^{9} - \frac{2243048203259428632}{8483757088811464747} a^{8} - \frac{205315823372500434}{8483757088811464747} a^{7} - \frac{89326576573837683}{8483757088811464747} a^{6} + \frac{2339723026575444375}{8483757088811464747} a^{5} + \frac{776018061034817900}{8483757088811464747} a^{4} + \frac{2966806574712555123}{8483757088811464747} a^{3} - \frac{298010337384250650}{1211965298401637821} a^{2} + \frac{1628789589591195243}{8483757088811464747} a + \frac{1034333685811552972}{8483757088811464747}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 525289669.639 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 648 |
| The 26 conjugacy class representatives for t18n199 |
| Character table for t18n199 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 6.6.434581.1, 9.9.26552265046321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | $18$ | $18$ | $18$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $83$ | $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 83.3.2.1 | $x^{3} - 83$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 83.3.2.1 | $x^{3} - 83$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 181 | Data not computed | ||||||