Normalized defining polynomial
\( x^{18} - 190 x^{16} + 15219 x^{14} - 670985 x^{12} + 17820195 x^{10} - 292417885 x^{8} + 2904860828 x^{6} - 16125600181 x^{4} + 40252586306 x^{2} - 16862569939 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1275032635857445963924166132749828096=2^{18}\cdot 19^{17}\cdot 31^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $101.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{31} a^{8} - \frac{4}{31} a^{6} - \frac{2}{31} a^{4} + \frac{10}{31} a^{2}$, $\frac{1}{31} a^{9} - \frac{4}{31} a^{7} - \frac{2}{31} a^{5} + \frac{10}{31} a^{3}$, $\frac{1}{961} a^{10} - \frac{4}{961} a^{8} + \frac{60}{961} a^{6} + \frac{382}{961} a^{4} + \frac{10}{31} a^{2}$, $\frac{1}{961} a^{11} - \frac{4}{961} a^{9} + \frac{60}{961} a^{7} + \frac{382}{961} a^{5} + \frac{10}{31} a^{3}$, $\frac{1}{29791} a^{12} - \frac{4}{29791} a^{10} + \frac{60}{29791} a^{8} - \frac{6345}{29791} a^{6} - \frac{455}{961} a^{4} + \frac{14}{31} a^{2}$, $\frac{1}{29791} a^{13} - \frac{4}{29791} a^{11} + \frac{60}{29791} a^{9} - \frac{6345}{29791} a^{7} - \frac{455}{961} a^{5} + \frac{14}{31} a^{3}$, $\frac{1}{923521} a^{14} - \frac{4}{923521} a^{12} + \frac{60}{923521} a^{10} - \frac{6345}{923521} a^{8} - \frac{14870}{29791} a^{6} + \frac{262}{961} a^{4} - \frac{8}{31} a^{2}$, $\frac{1}{923521} a^{15} - \frac{4}{923521} a^{13} + \frac{60}{923521} a^{11} - \frac{6345}{923521} a^{9} - \frac{14870}{29791} a^{7} + \frac{262}{961} a^{5} - \frac{8}{31} a^{3}$, $\frac{1}{76061903956134197} a^{16} - \frac{22215006197}{76061903956134197} a^{14} - \frac{535691093073}{76061903956134197} a^{12} - \frac{27922767191947}{76061903956134197} a^{10} + \frac{15071427809196}{2453609805036587} a^{8} + \frac{33650395962851}{79148703388277} a^{6} + \frac{314351971226}{2553183980267} a^{4} + \frac{20218176838}{82360773557} a^{2} + \frac{849938195}{2656799147}$, $\frac{1}{76061903956134197} a^{17} - \frac{22215006197}{76061903956134197} a^{15} - \frac{535691093073}{76061903956134197} a^{13} - \frac{27922767191947}{76061903956134197} a^{11} + \frac{15071427809196}{2453609805036587} a^{9} + \frac{33650395962851}{79148703388277} a^{7} + \frac{314351971226}{2553183980267} a^{5} + \frac{20218176838}{82360773557} a^{3} + \frac{849938195}{2656799147} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 402218304851 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^2:C_9$ (as 18T26):
| A solvable group of order 72 |
| The 24 conjugacy class representatives for $C_2\times C_2^2:C_9$ |
| Character table for $C_2\times C_2^2:C_9$ is not computed |
Intermediate fields
| 3.3.361.1, 6.6.152289992896.1, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | $18$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | R | $18$ | $18$ | R | ${\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{12}$ | $18$ | $18$ | $18$ | $18$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 19 | Data not computed | ||||||
| $31$ | 31.6.3.1 | $x^{6} - 62 x^{4} + 961 x^{2} - 2413071$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 31.6.3.2 | $x^{6} - 961 x^{2} + 268119$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 31.6.0.1 | $x^{6} - 2 x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |