Normalized defining polynomial
\( x^{18} - 72 x^{16} - 48 x^{15} + 1917 x^{14} + 1944 x^{13} - 24780 x^{12} - 30708 x^{11} + 164547 x^{10} + 240556 x^{9} - 512883 x^{8} - 957456 x^{7} + 410361 x^{6} + 1650123 x^{5} + 829629 x^{4} - 421407 x^{3} - 566379 x^{2} - 206577 x - 26241 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(126149432166859917805140950806401=3^{44}\cdot 71^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{114058824935167611220226426609989031} a^{17} - \frac{17231572137385694260003632967495694}{114058824935167611220226426609989031} a^{16} + \frac{25261885562601020404103708020190145}{114058824935167611220226426609989031} a^{15} + \frac{31949978374743118760709312896918673}{114058824935167611220226426609989031} a^{14} - \frac{4872862523536539743461765400422462}{114058824935167611220226426609989031} a^{13} + \frac{3931855763948480593350908624808644}{114058824935167611220226426609989031} a^{12} - \frac{35346184579401067376937110632009854}{114058824935167611220226426609989031} a^{11} + \frac{21198427886467217786110920318298885}{114058824935167611220226426609989031} a^{10} - \frac{39897621271875959864540882910834479}{114058824935167611220226426609989031} a^{9} - \frac{31676462387089935361279577590290392}{114058824935167611220226426609989031} a^{8} + \frac{5128975128402939511383520358028009}{114058824935167611220226426609989031} a^{7} + \frac{39322028487078092560340965259183158}{114058824935167611220226426609989031} a^{6} + \frac{18052963998382836047733387523559543}{114058824935167611220226426609989031} a^{5} - \frac{19049183563897358704677297299450167}{114058824935167611220226426609989031} a^{4} - \frac{14655545884455575933053303257977375}{114058824935167611220226426609989031} a^{3} + \frac{39330002490071492937003490716520575}{114058824935167611220226426609989031} a^{2} - \frac{41712540296039668485895468115343300}{114058824935167611220226426609989031} a - \frac{53423775881995547922468912344510647}{114058824935167611220226426609989031}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25129615009.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_9$ (as 18T7):
| A solvable group of order 36 |
| The 12 conjugacy class representatives for $C_2^2 : C_9$ |
| Character table for $C_2^2 : C_9$ |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 6.6.33074001.1, \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.22.8 | $x^{9} + 18 x^{7} + 24 x^{6} + 18 x^{5} + 18 x^{3} + 3$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ |
| 3.9.22.8 | $x^{9} + 18 x^{7} + 24 x^{6} + 18 x^{5} + 18 x^{3} + 3$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ | |
| $71$ | 71.6.3.2 | $x^{6} - 5041 x^{2} + 715822$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 71.6.0.1 | $x^{6} - 2 x + 13$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 71.6.3.1 | $x^{6} - 142 x^{4} + 5041 x^{2} - 1431644$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |