Normalized defining polynomial
\( x^{18} - x^{17} - 51 x^{16} + 62 x^{15} + 908 x^{14} - 1343 x^{13} - 6930 x^{12} + 12378 x^{11} + 21330 x^{10} - 48198 x^{9} - 19406 x^{8} + 77348 x^{7} - 7806 x^{6} - 52544 x^{5} + 16950 x^{4} + 13242 x^{3} - 5619 x^{2} - 571 x + 239 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(124186143639297844854038174358841=19^{6}\cdot 1129^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 1129$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{19} a^{16} + \frac{9}{19} a^{15} - \frac{5}{19} a^{14} - \frac{4}{19} a^{13} + \frac{5}{19} a^{12} + \frac{4}{19} a^{11} - \frac{4}{19} a^{10} + \frac{2}{19} a^{9} - \frac{1}{19} a^{8} + \frac{2}{19} a^{7} + \frac{6}{19} a^{5} + \frac{6}{19} a^{4} - \frac{4}{19} a^{3} + \frac{2}{19} a^{2} + \frac{5}{19} a + \frac{5}{19}$, $\frac{1}{712350484986941727440574863} a^{17} + \frac{16117437729884356890216634}{712350484986941727440574863} a^{16} + \frac{13558810403264297286474600}{712350484986941727440574863} a^{15} - \frac{105039673783981827805049417}{712350484986941727440574863} a^{14} + \frac{35441365745081414811242601}{712350484986941727440574863} a^{13} - \frac{170321598749969230421809723}{712350484986941727440574863} a^{12} - \frac{71677285459147185216446581}{712350484986941727440574863} a^{11} + \frac{328268098355803040402334121}{712350484986941727440574863} a^{10} - \frac{22921992601531987563294181}{64759134998812884312779533} a^{9} - \frac{103073716122290014816280045}{712350484986941727440574863} a^{8} + \frac{241166215980487670817302533}{712350484986941727440574863} a^{7} + \frac{26519277649121516802767712}{712350484986941727440574863} a^{6} + \frac{99666264337129175657380051}{712350484986941727440574863} a^{5} - \frac{308676925844925030195777803}{712350484986941727440574863} a^{4} - \frac{97448259069923855262622818}{712350484986941727440574863} a^{3} + \frac{314024068701723683476292749}{712350484986941727440574863} a^{2} + \frac{13444611168480436001783097}{64759134998812884312779533} a - \frac{223310542920247245748743677}{712350484986941727440574863}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18254353547.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:D_9$ (as 18T38):
| A solvable group of order 72 |
| The 9 conjugacy class representatives for $C_2^2:D_9$ |
| Character table for $C_2^2:D_9$ |
Intermediate fields
| 3.3.1129.1, 6.6.460145401.1, 9.9.1624709678881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 1129 | Data not computed | ||||||