Normalized defining polynomial
\( x^{18} - 56 x^{16} - 80 x^{15} + 1022 x^{14} + 2520 x^{13} - 5980 x^{12} - 21000 x^{11} + 11144 x^{10} + 75280 x^{9} + 9856 x^{8} - 129080 x^{7} - 57476 x^{6} + 99680 x^{5} + 62440 x^{4} - 24800 x^{3} - 19600 x^{2} + 1000 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(123410307017276135571456000000000=2^{33}\cdot 3^{12}\cdot 5^{9}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{4} a^{12}$, $\frac{1}{4} a^{13}$, $\frac{1}{20} a^{14} - \frac{1}{20} a^{12} + \frac{1}{10} a^{10} + \frac{1}{5} a^{6} - \frac{1}{5} a^{4} + \frac{1}{5} a^{2}$, $\frac{1}{260} a^{15} - \frac{3}{260} a^{14} - \frac{21}{260} a^{13} - \frac{1}{130} a^{12} - \frac{9}{130} a^{11} - \frac{4}{65} a^{10} - \frac{3}{13} a^{9} - \frac{3}{26} a^{8} - \frac{14}{65} a^{7} + \frac{29}{130} a^{6} - \frac{6}{65} a^{5} - \frac{27}{65} a^{4} - \frac{24}{65} a^{3} + \frac{7}{65} a^{2} + \frac{1}{13}$, $\frac{1}{1300} a^{16} + \frac{9}{1300} a^{14} - \frac{1}{10} a^{13} + \frac{33}{325} a^{12} + \frac{16}{65} a^{11} + \frac{1}{13} a^{10} + \frac{1}{26} a^{9} + \frac{61}{325} a^{8} + \frac{14}{65} a^{7} - \frac{21}{325} a^{6} - \frac{9}{65} a^{5} + \frac{116}{325} a^{4} - \frac{2}{5} a^{3} + \frac{5}{13} a^{2} - \frac{5}{13} a - \frac{2}{13}$, $\frac{1}{57998854486594695700} a^{17} - \frac{351799533030018}{14499713621648673925} a^{16} - \frac{21865106627513829}{14499713621648673925} a^{15} - \frac{321355233345152017}{14499713621648673925} a^{14} + \frac{3944336935444338817}{57998854486594695700} a^{13} - \frac{2917247681457580747}{28999427243297347850} a^{12} + \frac{455284660073462313}{2899942724329734785} a^{11} + \frac{1158945628812906777}{5799885448659469570} a^{10} + \frac{2194354549362312747}{28999427243297347850} a^{9} + \frac{207787365877940253}{14499713621648673925} a^{8} + \frac{109939769601130431}{2230725172561334450} a^{7} - \frac{2035370500196069521}{28999427243297347850} a^{6} - \frac{6118351460307040744}{14499713621648673925} a^{5} - \frac{5914822310633782567}{14499713621648673925} a^{4} - \frac{1381361357352929548}{2899942724329734785} a^{3} + \frac{500792017791376842}{2899942724329734785} a^{2} - \frac{286180036091029442}{579988544865946957} a + \frac{178585938211022843}{579988544865946957}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14691002887.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3^2$ (as 18T43):
| A solvable group of order 108 |
| The 27 conjugacy class representatives for $C_3\times S_3^2$ |
| Character table for $C_3\times S_3^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{10}) \), \(\Q(\zeta_{7})^+\), 6.6.153664000.1, 6.6.49787136000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 3.9.12.16 | $x^{9} + 9 x^{5} + 18 x^{3} + 27 x^{2} + 27$ | $3$ | $3$ | $12$ | $S_3\times C_3$ | $[2]^{6}$ | |
| $5$ | 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 7 | Data not computed | ||||||