Normalized defining polynomial
\( x^{18} - 30 x^{16} - 37 x^{15} + 204 x^{14} + 294 x^{13} - 604 x^{12} - 858 x^{11} + 984 x^{10} + 1201 x^{9} - 984 x^{8} - 858 x^{7} + 604 x^{6} + 294 x^{5} - 204 x^{4} - 37 x^{3} + 30 x^{2} - 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12267617659000607237787648=2^{12}\cdot 3^{24}\cdot 13^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{13} a^{14} + \frac{6}{13} a^{13} - \frac{1}{13} a^{12} + \frac{5}{13} a^{10} - \frac{1}{13} a^{9} + \frac{6}{13} a^{8} - \frac{6}{13} a^{6} - \frac{1}{13} a^{5} - \frac{5}{13} a^{4} + \frac{1}{13} a^{2} + \frac{6}{13} a - \frac{1}{13}$, $\frac{1}{13} a^{15} + \frac{2}{13} a^{13} + \frac{6}{13} a^{12} + \frac{5}{13} a^{11} - \frac{5}{13} a^{10} - \frac{1}{13} a^{9} + \frac{3}{13} a^{8} - \frac{6}{13} a^{7} - \frac{4}{13} a^{6} + \frac{1}{13} a^{5} + \frac{4}{13} a^{4} + \frac{1}{13} a^{3} + \frac{2}{13} a + \frac{6}{13}$, $\frac{1}{169} a^{16} + \frac{3}{169} a^{15} + \frac{6}{169} a^{14} + \frac{62}{169} a^{13} + \frac{45}{169} a^{12} + \frac{75}{169} a^{11} - \frac{9}{169} a^{10} - \frac{43}{169} a^{9} - \frac{64}{169} a^{8} + \frac{17}{169} a^{7} + \frac{43}{169} a^{6} + \frac{68}{169} a^{5} - \frac{59}{169} a^{4} - \frac{75}{169} a^{3} + \frac{6}{169} a^{2} - \frac{16}{169} a - \frac{25}{169}$, $\frac{1}{18421} a^{17} - \frac{33}{18421} a^{16} + \frac{405}{18421} a^{15} + \frac{223}{18421} a^{14} + \frac{7342}{18421} a^{13} + \frac{6528}{18421} a^{12} - \frac{4568}{18421} a^{11} - \frac{5439}{18421} a^{10} - \frac{2104}{18421} a^{9} - \frac{8937}{18421} a^{8} - \frac{4287}{18421} a^{7} - \frac{869}{18421} a^{6} - \frac{5926}{18421} a^{5} + \frac{1178}{18421} a^{4} + \frac{6593}{18421} a^{3} - \frac{5601}{18421} a^{2} - \frac{3271}{18421} a + \frac{2213}{18421}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3530519.19402 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.3.4212.1 x3, \(\Q(\zeta_{9})^+\), 6.6.230632272.1, 6.6.2847312.1 x2, 6.6.14414517.1, 9.9.74724856128.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.6.2847312.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| $13$ | 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |