Normalized defining polynomial
\( x^{18} - 7 x^{17} - 86 x^{16} + 667 x^{15} + 2417 x^{14} - 23129 x^{13} - 22797 x^{12} + 367676 x^{11} - 35719 x^{10} - 2789975 x^{9} + 1325038 x^{8} + 10107152 x^{7} - 5424234 x^{6} - 15658948 x^{5} + 10207056 x^{4} + 8619424 x^{3} - 7408928 x^{2} + 209280 x + 544256 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1206993703226402676089520612229833232=2^{4}\cdot 193^{7}\cdot 229^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $101.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 193, 229$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{13} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} + \frac{1}{8} a^{9} + \frac{1}{8} a^{8} - \frac{1}{4} a^{7} + \frac{1}{8} a^{6} + \frac{3}{8} a^{5} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{15} - \frac{1}{16} a^{14} - \frac{1}{16} a^{12} + \frac{3}{16} a^{11} - \frac{3}{16} a^{10} + \frac{5}{16} a^{9} - \frac{1}{8} a^{8} - \frac{7}{16} a^{7} - \frac{1}{16} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{224} a^{16} - \frac{1}{32} a^{15} - \frac{5}{112} a^{14} + \frac{23}{224} a^{13} - \frac{23}{224} a^{12} + \frac{11}{224} a^{11} - \frac{17}{224} a^{10} - \frac{5}{14} a^{9} - \frac{51}{224} a^{8} + \frac{25}{224} a^{7} - \frac{51}{112} a^{6} + \frac{11}{56} a^{5} - \frac{7}{16} a^{4} + \frac{23}{56} a^{3} - \frac{1}{28} a^{2} - \frac{3}{14} a - \frac{2}{7}$, $\frac{1}{128407018955154260010239864316994535492991616} a^{17} + \frac{32744031056075049587735020519302776867061}{128407018955154260010239864316994535492991616} a^{16} - \frac{438604541487242220723517629623220554341365}{64203509477577130005119932158497267746495808} a^{15} + \frac{5303613948444029667187316331538196756214707}{128407018955154260010239864316994535492991616} a^{14} - \frac{5853358458641662461603264493144028388836427}{128407018955154260010239864316994535492991616} a^{13} - \frac{7294024357777354941879407051496683426925581}{128407018955154260010239864316994535492991616} a^{12} + \frac{5555985037173376218354383976015382845324855}{128407018955154260010239864316994535492991616} a^{11} - \frac{1112778878813403725531875585853804949166953}{8025438684697141250639991519812158468311976} a^{10} - \frac{1603448605110684561711265250116601377825041}{18343859850736322858605694902427790784713088} a^{9} + \frac{42292761268024637630532304782884905116553077}{128407018955154260010239864316994535492991616} a^{8} + \frac{29379726999063990911963523273969361915859533}{64203509477577130005119932158497267746495808} a^{7} + \frac{697480436683499673054090172750696985357941}{2292982481342040357325711862803473848089136} a^{6} - \frac{21568605769211595453452460100822802908153725}{64203509477577130005119932158497267746495808} a^{5} - \frac{1829293576156010634179966623359539594926047}{32101754738788565002559966079248633873247904} a^{4} - \frac{222710816449599603849255754202517151074219}{2006359671174285312659997879953039617077994} a^{3} - \frac{100153881101853399663643512344324717239114}{1003179835587142656329998939976519808538997} a^{2} + \frac{1038557737735217884042793833801675049674753}{4012719342348570625319995759906079234155988} a + \frac{347353661832333879922136172210953426241000}{1003179835587142656329998939976519808538997}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10392292144300 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 80 conjugacy class representatives for t18n782 are not computed |
| Character table for t18n782 is not computed |
Intermediate fields
| 3.3.229.1, 9.9.1789291325044.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | $18$ | $18$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 193 | Data not computed | ||||||
| 229 | Data not computed | ||||||