Normalized defining polynomial
\( x^{18} - 36 x^{16} + 540 x^{14} - 4368 x^{12} + 20592 x^{10} - 5 x^{9} - 57024 x^{8} + 90 x^{7} + 88704 x^{6} - 540 x^{5} - 69120 x^{4} + 1200 x^{3} + 20736 x^{2} - 720 x - 1511 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(119217173915258668597396055301=3^{45}\cdot 7^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(189=3^{3}\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{189}(64,·)$, $\chi_{189}(1,·)$, $\chi_{189}(146,·)$, $\chi_{189}(83,·)$, $\chi_{189}(20,·)$, $\chi_{189}(85,·)$, $\chi_{189}(22,·)$, $\chi_{189}(167,·)$, $\chi_{189}(104,·)$, $\chi_{189}(41,·)$, $\chi_{189}(106,·)$, $\chi_{189}(43,·)$, $\chi_{189}(169,·)$, $\chi_{189}(148,·)$, $\chi_{189}(188,·)$, $\chi_{189}(125,·)$, $\chi_{189}(62,·)$, $\chi_{189}(127,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{17} a^{9} - \frac{1}{17} a^{7} + \frac{6}{17} a^{5} - \frac{2}{17} a^{3} + \frac{8}{17} a + \frac{6}{17}$, $\frac{1}{17} a^{10} - \frac{1}{17} a^{8} + \frac{6}{17} a^{6} - \frac{2}{17} a^{4} + \frac{8}{17} a^{2} + \frac{6}{17} a$, $\frac{1}{17} a^{11} + \frac{5}{17} a^{7} + \frac{4}{17} a^{5} + \frac{6}{17} a^{3} + \frac{6}{17} a^{2} + \frac{8}{17} a + \frac{6}{17}$, $\frac{1}{17} a^{12} + \frac{5}{17} a^{8} + \frac{4}{17} a^{6} + \frac{6}{17} a^{4} + \frac{6}{17} a^{3} + \frac{8}{17} a^{2} + \frac{6}{17} a$, $\frac{1}{17} a^{13} - \frac{8}{17} a^{7} - \frac{7}{17} a^{5} + \frac{6}{17} a^{4} + \frac{1}{17} a^{3} + \frac{6}{17} a^{2} - \frac{6}{17} a + \frac{4}{17}$, $\frac{1}{8279} a^{14} + \frac{91}{8279} a^{13} - \frac{28}{8279} a^{12} + \frac{69}{8279} a^{11} - \frac{179}{8279} a^{10} - \frac{203}{8279} a^{9} - \frac{1193}{8279} a^{8} - \frac{3019}{8279} a^{7} + \frac{1782}{8279} a^{6} - \frac{910}{8279} a^{5} + \frac{2981}{8279} a^{4} - \frac{3960}{8279} a^{3} - \frac{2708}{8279} a^{2} + \frac{42}{487} a + \frac{3640}{8279}$, $\frac{1}{8279} a^{15} - \frac{30}{8279} a^{13} + \frac{182}{8279} a^{12} - \frac{127}{8279} a^{11} + \frac{15}{8279} a^{10} + \frac{235}{8279} a^{9} + \frac{1813}{8279} a^{8} + \frac{2330}{8279} a^{7} + \frac{3969}{8279} a^{6} + \frac{566}{8279} a^{5} - \frac{1050}{8279} a^{4} + \frac{1168}{8279} a^{3} - \frac{3663}{8279} a^{2} - \frac{1433}{8279} a + \frac{1868}{8279}$, $\frac{1}{8279} a^{16} - \frac{10}{8279} a^{13} + \frac{7}{8279} a^{12} + \frac{137}{8279} a^{11} + \frac{222}{8279} a^{10} + \frac{106}{8279} a^{9} - \frac{831}{8279} a^{8} - \frac{2837}{8279} a^{7} - \frac{1005}{8279} a^{6} + \frac{2331}{8279} a^{5} + \frac{1964}{8279} a^{4} + \frac{44}{487} a^{3} - \frac{3292}{8279} a^{2} - \frac{1062}{8279} a - \frac{3784}{8279}$, $\frac{1}{8279} a^{17} - \frac{57}{8279} a^{13} - \frac{143}{8279} a^{12} - \frac{62}{8279} a^{11} - \frac{223}{8279} a^{10} + \frac{61}{8279} a^{9} + \frac{330}{8279} a^{8} + \frac{113}{487} a^{7} + \frac{240}{487} a^{6} - \frac{3240}{8279} a^{5} - \frac{3045}{8279} a^{4} + \frac{2399}{8279} a^{3} - \frac{3305}{8279} a^{2} + \frac{434}{8279} a + \frac{2797}{8279}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 550518949.413 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{21}) \), \(\Q(\zeta_{9})^+\), 6.6.6751269.1, \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | R | $18$ | $18$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | $18$ | $18$ | $18$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||