Normalized defining polynomial
\( x^{18} - 9 x^{17} - 18 x^{16} + 348 x^{15} - 252 x^{14} - 5040 x^{13} + 8472 x^{12} + 33174 x^{11} - 76374 x^{10} - 91106 x^{9} + 292437 x^{8} + 35910 x^{7} - 455655 x^{6} + 186741 x^{5} + 192555 x^{4} - 131820 x^{3} - 2259 x^{2} + 14355 x - 2161 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(116781890125989356502353933497857=3^{44}\cdot 17^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(459=3^{3}\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{459}(256,·)$, $\chi_{459}(1,·)$, $\chi_{459}(322,·)$, $\chi_{459}(67,·)$, $\chi_{459}(205,·)$, $\chi_{459}(271,·)$, $\chi_{459}(16,·)$, $\chi_{459}(409,·)$, $\chi_{459}(154,·)$, $\chi_{459}(220,·)$, $\chi_{459}(358,·)$, $\chi_{459}(103,·)$, $\chi_{459}(424,·)$, $\chi_{459}(169,·)$, $\chi_{459}(307,·)$, $\chi_{459}(52,·)$, $\chi_{459}(373,·)$, $\chi_{459}(118,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{54849393073733009857881388686514037953} a^{17} - \frac{19164030115436102146493996814277932546}{54849393073733009857881388686514037953} a^{16} + \frac{4158245565130784695251449092993474130}{54849393073733009857881388686514037953} a^{15} + \frac{4980102323197351160890088531419283765}{54849393073733009857881388686514037953} a^{14} + \frac{13903335595864738832058225317079646038}{54849393073733009857881388686514037953} a^{13} - \frac{14579023142590663681017942404045031745}{54849393073733009857881388686514037953} a^{12} - \frac{19238541068614478775899961970114092220}{54849393073733009857881388686514037953} a^{11} - \frac{24091417621117095384427946744081486291}{54849393073733009857881388686514037953} a^{10} - \frac{10438349140660199589905713260896326471}{54849393073733009857881388686514037953} a^{9} + \frac{6305685268101957909480542434924073581}{54849393073733009857881388686514037953} a^{8} + \frac{25712548691560364591234965015684201957}{54849393073733009857881388686514037953} a^{7} + \frac{23001880382961631392310176691655811279}{54849393073733009857881388686514037953} a^{6} + \frac{1759900813994170052844989395952421206}{54849393073733009857881388686514037953} a^{5} - \frac{21963375347337508318406839842774113537}{54849393073733009857881388686514037953} a^{4} + \frac{24062603502077695068193126800062029797}{54849393073733009857881388686514037953} a^{3} - \frac{741798429812861955411700078985875157}{54849393073733009857881388686514037953} a^{2} - \frac{20713704974143220779804113440095302712}{54849393073733009857881388686514037953} a + \frac{21740095684248024877264943215937036853}{54849393073733009857881388686514037953}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13605878233.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), \(\Q(\zeta_{9})^+\), 6.6.32234193.1, \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | $18$ | $18$ | $18$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | $18$ | $18$ | $18$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $17$ | 17.6.3.1 | $x^{6} - 34 x^{4} + 289 x^{2} - 44217$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 17.6.3.1 | $x^{6} - 34 x^{4} + 289 x^{2} - 44217$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 17.6.3.1 | $x^{6} - 34 x^{4} + 289 x^{2} - 44217$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |