Normalized defining polynomial
\( x^{18} - 2 x^{17} - 163 x^{16} + 302 x^{15} + 10352 x^{14} - 15492 x^{13} - 339160 x^{12} + 332304 x^{11} + 6338303 x^{10} - 2252744 x^{9} - 68963585 x^{8} - 21248050 x^{7} + 407115640 x^{6} + 393026168 x^{5} - 975375086 x^{4} - 1665426864 x^{3} - 327762447 x^{2} + 499248799 x + 195862313 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11429800642382710409150585988278000789=1129^{9}\cdot 3835245581\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $114.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1129, 3835245581$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{9} a^{15} - \frac{2}{9} a^{14} + \frac{1}{3} a^{13} - \frac{1}{9} a^{12} + \frac{1}{9} a^{11} - \frac{1}{9} a^{10} - \frac{2}{9} a^{9} + \frac{4}{9} a^{8} - \frac{2}{9} a^{7} + \frac{4}{9} a^{6} + \frac{4}{9} a^{5} - \frac{1}{9} a^{4} - \frac{2}{9} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{9}$, $\frac{1}{9} a^{16} - \frac{1}{9} a^{14} - \frac{4}{9} a^{13} - \frac{1}{9} a^{12} + \frac{1}{9} a^{11} - \frac{4}{9} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{2}{9} a^{5} - \frac{4}{9} a^{4} + \frac{2}{9} a^{3} - \frac{1}{3} a^{2} - \frac{4}{9} a - \frac{2}{9}$, $\frac{1}{18989262447225698896882600734664031900252776050168568219737} a^{17} - \frac{483559521173480349766704354050623085916909824718228404635}{18989262447225698896882600734664031900252776050168568219737} a^{16} + \frac{749446324100825337714457052625627178367170592843868858457}{18989262447225698896882600734664031900252776050168568219737} a^{15} + \frac{306462501141515717398175492912129883268206359680824001727}{18989262447225698896882600734664031900252776050168568219737} a^{14} + \frac{939860274169833140135952188811840167045848368940779121880}{6329754149075232965627533578221343966750925350056189406579} a^{13} - \frac{358366754702755296643315663668188604661459047756722595599}{6329754149075232965627533578221343966750925350056189406579} a^{12} - \frac{2560440327731016097938867451853622059332159356976288062770}{6329754149075232965627533578221343966750925350056189406579} a^{11} + \frac{9183738415901035260553240113680541296664027197392748982392}{18989262447225698896882600734664031900252776050168568219737} a^{10} + \frac{3520024244728661972355319000135188724125658118381702174849}{18989262447225698896882600734664031900252776050168568219737} a^{9} + \frac{1839046194253081686193481521229466224032978240274156877740}{18989262447225698896882600734664031900252776050168568219737} a^{8} + \frac{8879919613803492555742997560906667410018957758240836605898}{18989262447225698896882600734664031900252776050168568219737} a^{7} - \frac{69888637136598289714671191975173730530612743324120912488}{575432195370475724147957598020122178795538668186926309689} a^{6} + \frac{1437843662084074190290212587587889499722106748545671211661}{6329754149075232965627533578221343966750925350056189406579} a^{5} + \frac{7304841387003629933683033922997271690511517907955668333990}{18989262447225698896882600734664031900252776050168568219737} a^{4} - \frac{114747184506152933963127692537428173079551441095558899219}{2109918049691744321875844526073781322250308450018729802193} a^{3} + \frac{7105965859027411501713425120930332397302499833509940611884}{18989262447225698896882600734664031900252776050168568219737} a^{2} - \frac{8094354136026077143302449885555565994337730802839753259777}{18989262447225698896882600734664031900252776050168568219737} a - \frac{799656013359606681978352912858663625659261773607918756608}{2109918049691744321875844526073781322250308450018729802193}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3570634178580 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 9216 |
| The 88 conjugacy class representatives for t18n548 are not computed |
| Character table for t18n548 is not computed |
Intermediate fields
| 3.3.1129.1, 9.9.1624709678881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}$ | $18$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1129 | Data not computed | ||||||
| 3835245581 | Data not computed | ||||||