Properties

Label 18.18.1132905006...3877.1
Degree $18$
Signature $[18, 0]$
Discriminant $13^{15}\cdot 19^{12}$
Root discriminant $60.37$
Ramified primes $13, 19$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_6 \times C_3$ (as 18T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2053, -1654, -33502, 40177, 123595, -157898, -156694, 228127, 53306, -131047, 8426, 31684, -5979, -3458, 874, 169, -50, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 3*x^17 - 50*x^16 + 169*x^15 + 874*x^14 - 3458*x^13 - 5979*x^12 + 31684*x^11 + 8426*x^10 - 131047*x^9 + 53306*x^8 + 228127*x^7 - 156694*x^6 - 157898*x^5 + 123595*x^4 + 40177*x^3 - 33502*x^2 - 1654*x + 2053)
 
gp: K = bnfinit(x^18 - 3*x^17 - 50*x^16 + 169*x^15 + 874*x^14 - 3458*x^13 - 5979*x^12 + 31684*x^11 + 8426*x^10 - 131047*x^9 + 53306*x^8 + 228127*x^7 - 156694*x^6 - 157898*x^5 + 123595*x^4 + 40177*x^3 - 33502*x^2 - 1654*x + 2053, 1)
 

Normalized defining polynomial

\( x^{18} - 3 x^{17} - 50 x^{16} + 169 x^{15} + 874 x^{14} - 3458 x^{13} - 5979 x^{12} + 31684 x^{11} + 8426 x^{10} - 131047 x^{9} + 53306 x^{8} + 228127 x^{7} - 156694 x^{6} - 157898 x^{5} + 123595 x^{4} + 40177 x^{3} - 33502 x^{2} - 1654 x + 2053 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[18, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(113290500653811459555808941573877=13^{15}\cdot 19^{12}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $60.37$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $13, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(247=13\cdot 19\)
Dirichlet character group:    $\lbrace$$\chi_{247}(64,·)$, $\chi_{247}(1,·)$, $\chi_{247}(68,·)$, $\chi_{247}(134,·)$, $\chi_{247}(140,·)$, $\chi_{247}(77,·)$, $\chi_{247}(144,·)$, $\chi_{247}(87,·)$, $\chi_{247}(153,·)$, $\chi_{247}(220,·)$, $\chi_{247}(30,·)$, $\chi_{247}(159,·)$, $\chi_{247}(235,·)$, $\chi_{247}(172,·)$, $\chi_{247}(49,·)$, $\chi_{247}(178,·)$, $\chi_{247}(121,·)$, $\chi_{247}(191,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{15} + \frac{1}{3} a^{14} + \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{78231879476215077155680335392725977} a^{17} - \frac{124469085971059496177917595280718}{759532810448690069472624615463359} a^{16} + \frac{19859850204899748234178685678698784}{78231879476215077155680335392725977} a^{15} - \frac{2153004674168976526168709969752231}{78231879476215077155680335392725977} a^{14} + \frac{29148475360184763653507334814969235}{78231879476215077155680335392725977} a^{13} - \frac{20687767619851077348124354360147954}{78231879476215077155680335392725977} a^{12} + \frac{35965012878465387833704384045869442}{78231879476215077155680335392725977} a^{11} + \frac{1078565600509325303020338987298747}{26077293158738359051893445130908659} a^{10} + \frac{22347994212379905386281430551840628}{78231879476215077155680335392725977} a^{9} + \frac{10388222246609690766408959097925559}{26077293158738359051893445130908659} a^{8} - \frac{26647133077323386235515656641208777}{78231879476215077155680335392725977} a^{7} + \frac{24221905531217614628191387790675339}{78231879476215077155680335392725977} a^{6} - \frac{11992425851255249159281368539822594}{26077293158738359051893445130908659} a^{5} - \frac{16931014231891006496333894635294862}{78231879476215077155680335392725977} a^{4} + \frac{4016080529207884964615516327726353}{8692431052912786350631148376969553} a^{3} + \frac{2097842527036537377343058666997622}{78231879476215077155680335392725977} a^{2} - \frac{34672213633141542738179139092090738}{78231879476215077155680335392725977} a + \frac{23607734424142083397670540766947164}{78231879476215077155680335392725977}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $17$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 12940318365.3 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3\times C_6$ (as 18T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 18
The 18 conjugacy class representatives for $C_6 \times C_3$
Character table for $C_6 \times C_3$

Intermediate fields

\(\Q(\sqrt{13}) \), 3.3.361.1, 3.3.61009.2, 3.3.61009.1, 3.3.169.1, 6.6.286315237.1, 6.6.48387275053.2, 6.6.48387275053.1, \(\Q(\zeta_{13})^+\), 9.9.227081481823729.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ R ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ R ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
13Data not computed
19Data not computed