Normalized defining polynomial
\( x^{18} - 6 x^{17} - 14 x^{16} + 114 x^{15} + 112 x^{14} - 925 x^{13} - 833 x^{12} + 3876 x^{11} + 4484 x^{10} - 7794 x^{9} - 12791 x^{8} + 4448 x^{7} + 15963 x^{6} + 4714 x^{5} - 6240 x^{4} - 4367 x^{3} - 319 x^{2} + 381 x + 79 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(111420547765458558938468352=2^{12}\cdot 3^{12}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{21} a^{15} + \frac{2}{21} a^{14} + \frac{1}{7} a^{13} - \frac{2}{21} a^{12} - \frac{1}{7} a^{11} + \frac{2}{21} a^{10} + \frac{1}{7} a^{9} + \frac{2}{21} a^{8} - \frac{2}{21} a^{7} - \frac{3}{7} a^{6} - \frac{10}{21} a^{5} - \frac{5}{21} a^{4} - \frac{8}{21} a^{3} + \frac{10}{21} a^{2} - \frac{5}{21} a - \frac{2}{7}$, $\frac{1}{21} a^{16} - \frac{1}{21} a^{14} - \frac{1}{21} a^{13} + \frac{1}{21} a^{12} + \frac{8}{21} a^{11} + \frac{2}{7} a^{10} + \frac{1}{7} a^{9} - \frac{2}{7} a^{8} - \frac{5}{21} a^{7} + \frac{1}{21} a^{6} - \frac{2}{7} a^{5} + \frac{2}{21} a^{4} - \frac{2}{21} a^{3} - \frac{4}{21} a^{2} - \frac{10}{21} a + \frac{5}{21}$, $\frac{1}{59249757} a^{17} + \frac{164018}{19749919} a^{16} + \frac{191371}{59249757} a^{15} - \frac{4420835}{59249757} a^{14} - \frac{741571}{59249757} a^{13} - \frac{248386}{19749919} a^{12} - \frac{5200078}{59249757} a^{11} - \frac{27049423}{59249757} a^{10} + \frac{3583597}{8464251} a^{9} + \frac{24151816}{59249757} a^{8} - \frac{2409096}{19749919} a^{7} - \frac{15556850}{59249757} a^{6} + \frac{26759930}{59249757} a^{5} + \frac{8495147}{19749919} a^{4} - \frac{154765}{59249757} a^{3} + \frac{16124482}{59249757} a^{2} - \frac{6989779}{59249757} a - \frac{474977}{2821417}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11924892.4742 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2\times S_3$ (as 18T17):
| A solvable group of order 54 |
| The 27 conjugacy class representatives for $C_3^2\times S_3$ |
| Character table for $C_3^2\times S_3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.3.169.1, 6.6.481195728.1, 6.6.481195728.2, 6.6.2847312.1, \(\Q(\zeta_{13})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 13 | Data not computed | ||||||