Properties

Label 18.18.1112524081...4461.1
Degree $18$
Signature $[18, 0]$
Discriminant $3^{31}\cdot 23^{9}$
Root discriminant $31.81$
Ramified primes $3, 23$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $S_3 \times C_3$ (as 18T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -18, 63, 384, -2802, 4521, 4149, -17265, 9624, 12758, -16686, 3330, 3708, -1848, -87, 195, -21, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 6*x^17 - 21*x^16 + 195*x^15 - 87*x^14 - 1848*x^13 + 3708*x^12 + 3330*x^11 - 16686*x^10 + 12758*x^9 + 9624*x^8 - 17265*x^7 + 4149*x^6 + 4521*x^5 - 2802*x^4 + 384*x^3 + 63*x^2 - 18*x + 1)
 
gp: K = bnfinit(x^18 - 6*x^17 - 21*x^16 + 195*x^15 - 87*x^14 - 1848*x^13 + 3708*x^12 + 3330*x^11 - 16686*x^10 + 12758*x^9 + 9624*x^8 - 17265*x^7 + 4149*x^6 + 4521*x^5 - 2802*x^4 + 384*x^3 + 63*x^2 - 18*x + 1, 1)
 

Normalized defining polynomial

\( x^{18} - 6 x^{17} - 21 x^{16} + 195 x^{15} - 87 x^{14} - 1848 x^{13} + 3708 x^{12} + 3330 x^{11} - 16686 x^{10} + 12758 x^{9} + 9624 x^{8} - 17265 x^{7} + 4149 x^{6} + 4521 x^{5} - 2802 x^{4} + 384 x^{3} + 63 x^{2} - 18 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[18, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1112524081631721433112434461=3^{31}\cdot 23^{9}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $31.81$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{5} a^{15} - \frac{2}{5} a^{13} + \frac{2}{5} a^{12} + \frac{2}{5} a^{11} - \frac{1}{5} a^{10} - \frac{2}{5} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{16} - \frac{2}{5} a^{14} + \frac{2}{5} a^{13} + \frac{2}{5} a^{12} - \frac{1}{5} a^{11} - \frac{2}{5} a^{10} + \frac{2}{5} a^{9} - \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{82504631686173552365} a^{17} + \frac{6592181313008877047}{82504631686173552365} a^{16} - \frac{6526506621805354317}{82504631686173552365} a^{15} - \frac{15173277912923482677}{82504631686173552365} a^{14} + \frac{829506912588447766}{82504631686173552365} a^{13} - \frac{3795801069741336942}{82504631686173552365} a^{12} - \frac{4062663358385926494}{82504631686173552365} a^{11} - \frac{2896821666022966727}{82504631686173552365} a^{10} - \frac{26165685726921987402}{82504631686173552365} a^{9} - \frac{1705797234569716049}{16500926337234710473} a^{8} - \frac{19122388640998931421}{82504631686173552365} a^{7} - \frac{5373330925058307701}{82504631686173552365} a^{6} + \frac{31558688519262177714}{82504631686173552365} a^{5} - \frac{6901875121698576967}{16500926337234710473} a^{4} - \frac{683120615941354773}{82504631686173552365} a^{3} - \frac{5053652355309015992}{82504631686173552365} a^{2} - \frac{27941602272152219613}{82504631686173552365} a + \frac{4312016284941231176}{16500926337234710473}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $17$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 50341250.6584 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3\times S_3$ (as 18T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 18
The 9 conjugacy class representatives for $S_3 \times C_3$
Character table for $S_3 \times C_3$

Intermediate fields

\(\Q(\sqrt{69}) \), 3.3.621.1 x3, \(\Q(\zeta_{9})^+\), 6.6.26609229.1, 6.6.239483061.2 x2, 6.6.239483061.1, 9.9.174583151469.1 x3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 6 sibling: 6.6.239483061.2
Degree 9 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ R ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ R ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
$23$23.6.3.1$x^{6} - 46 x^{4} + 529 x^{2} - 194672$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
23.6.3.1$x^{6} - 46 x^{4} + 529 x^{2} - 194672$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
23.6.3.1$x^{6} - 46 x^{4} + 529 x^{2} - 194672$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$