Properties

Label 18.18.1104158988...0000.1
Degree $18$
Signature $[18, 0]$
Discriminant $2^{24}\cdot 5^{9}\cdot 7^{8}\cdot 197^{6}$
Root discriminant $77.85$
Ramified primes $2, 5, 7, 197$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group $C_3:S_3:S_4$ (as 18T153)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![25, 1120, 11294, 11522, -93597, -17786, 194837, -21074, -153021, 27338, 59840, -10414, -12754, 1674, 1459, -98, -77, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 77*x^16 - 98*x^15 + 1459*x^14 + 1674*x^13 - 12754*x^12 - 10414*x^11 + 59840*x^10 + 27338*x^9 - 153021*x^8 - 21074*x^7 + 194837*x^6 - 17786*x^5 - 93597*x^4 + 11522*x^3 + 11294*x^2 + 1120*x + 25)
 
gp: K = bnfinit(x^18 - 77*x^16 - 98*x^15 + 1459*x^14 + 1674*x^13 - 12754*x^12 - 10414*x^11 + 59840*x^10 + 27338*x^9 - 153021*x^8 - 21074*x^7 + 194837*x^6 - 17786*x^5 - 93597*x^4 + 11522*x^3 + 11294*x^2 + 1120*x + 25, 1)
 

Normalized defining polynomial

\( x^{18} - 77 x^{16} - 98 x^{15} + 1459 x^{14} + 1674 x^{13} - 12754 x^{12} - 10414 x^{11} + 59840 x^{10} + 27338 x^{9} - 153021 x^{8} - 21074 x^{7} + 194837 x^{6} - 17786 x^{5} - 93597 x^{4} + 11522 x^{3} + 11294 x^{2} + 1120 x + 25 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[18, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(11041589880690939275804672000000000=2^{24}\cdot 5^{9}\cdot 7^{8}\cdot 197^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $77.85$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 7, 197$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5} a^{14} + \frac{1}{5} a^{13} - \frac{1}{5} a^{12} - \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{1}{5} a^{7} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{2} + \frac{2}{5} a$, $\frac{1}{25} a^{15} + \frac{1}{25} a^{14} + \frac{9}{25} a^{13} + \frac{9}{25} a^{12} + \frac{6}{25} a^{11} - \frac{3}{25} a^{10} + \frac{2}{5} a^{9} + \frac{9}{25} a^{8} - \frac{1}{5} a^{7} - \frac{2}{25} a^{6} - \frac{6}{25} a^{5} + \frac{1}{25} a^{3} - \frac{8}{25} a^{2} - \frac{1}{5} a$, $\frac{1}{425} a^{16} - \frac{6}{425} a^{15} + \frac{1}{25} a^{14} - \frac{89}{425} a^{13} - \frac{47}{425} a^{12} - \frac{2}{85} a^{11} - \frac{154}{425} a^{10} - \frac{6}{425} a^{9} + \frac{182}{425} a^{8} + \frac{143}{425} a^{7} + \frac{208}{425} a^{6} - \frac{88}{425} a^{5} - \frac{39}{425} a^{4} - \frac{33}{85} a^{3} - \frac{9}{425} a^{2} - \frac{1}{5} a - \frac{5}{17}$, $\frac{1}{993712928147061512763640375} a^{17} + \frac{476981198371629614934234}{993712928147061512763640375} a^{16} + \frac{19178902331891056893725749}{993712928147061512763640375} a^{15} - \frac{85380040819584073841418197}{993712928147061512763640375} a^{14} + \frac{327368742067174834600973281}{993712928147061512763640375} a^{13} - \frac{99617802971415175128992507}{993712928147061512763640375} a^{12} - \frac{384318399195462356987466487}{993712928147061512763640375} a^{11} - \frac{444516849176518051009004667}{993712928147061512763640375} a^{10} - \frac{379013876689402413312246883}{993712928147061512763640375} a^{9} + \frac{415115635483513058418990071}{993712928147061512763640375} a^{8} - \frac{395515004896329322602971422}{993712928147061512763640375} a^{7} - \frac{391530071424730365459244137}{993712928147061512763640375} a^{6} - \frac{364343970893745607142373521}{993712928147061512763640375} a^{5} + \frac{66131493566504862458258467}{198742585629412302552728075} a^{4} - \frac{19390904294720335417813237}{993712928147061512763640375} a^{3} + \frac{191433173233151308415868319}{993712928147061512763640375} a^{2} - \frac{73584531446590035873462766}{198742585629412302552728075} a + \frac{292109632351411078331766}{39748517125882460510545615}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $17$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 300483421892 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3:S_3:S_4$ (as 18T153):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 432
The 20 conjugacy class representatives for $C_3:S_3:S_4$
Character table for $C_3:S_3:S_4$

Intermediate fields

3.3.985.1, 6.6.310472000.1, 9.9.734261622920000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ R R ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$7$7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.6.4.3$x^{6} + 56 x^{3} + 1323$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
7.6.4.3$x^{6} + 56 x^{3} + 1323$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
$197$197.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
197.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
197.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
197.4.2.1$x^{4} + 985 x^{2} + 349281$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
197.4.2.1$x^{4} + 985 x^{2} + 349281$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
197.4.2.1$x^{4} + 985 x^{2} + 349281$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$