Normalized defining polynomial
\( x^{18} - 6 x^{17} - 33 x^{16} + 196 x^{15} + 471 x^{14} - 2466 x^{13} - 3711 x^{12} + 14796 x^{11} + 16236 x^{10} - 43224 x^{9} - 35292 x^{8} + 59136 x^{7} + 32504 x^{6} - 38304 x^{5} - 10032 x^{4} + 11360 x^{3} + 192 x^{2} - 1152 x + 160 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1065181894124631684194038211149824=2^{30}\cdot 3^{24}\cdot 37^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{12} a^{9} + \frac{1}{6} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{6} a^{3} + \frac{1}{3}$, $\frac{1}{12} a^{10} + \frac{1}{6} a^{7} - \frac{1}{4} a^{6} - \frac{1}{6} a^{4} - \frac{1}{2} a^{3} + \frac{1}{3} a$, $\frac{1}{12} a^{11} - \frac{1}{12} a^{8} - \frac{1}{4} a^{6} + \frac{1}{12} a^{5} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{24} a^{12} - \frac{1}{8} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{6} a^{3} - \frac{1}{3}$, $\frac{1}{24} a^{13} - \frac{1}{24} a^{9} - \frac{1}{4} a^{7} + \frac{1}{6} a^{6} - \frac{1}{4} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{888} a^{14} + \frac{5}{888} a^{13} + \frac{3}{296} a^{12} - \frac{3}{74} a^{11} - \frac{19}{888} a^{10} - \frac{19}{888} a^{9} - \frac{29}{296} a^{8} - \frac{29}{222} a^{7} + \frac{25}{222} a^{6} + \frac{73}{444} a^{5} + \frac{1}{111} a^{3} - \frac{1}{3} a^{2} + \frac{50}{111} a - \frac{8}{111}$, $\frac{1}{1776} a^{15} - \frac{1}{1776} a^{14} + \frac{1}{111} a^{13} - \frac{1}{111} a^{12} + \frac{49}{1776} a^{11} - \frac{53}{1776} a^{10} - \frac{5}{888} a^{9} + \frac{55}{888} a^{8} + \frac{7}{222} a^{7} + \frac{15}{74} a^{6} - \frac{17}{222} a^{5} + \frac{25}{74} a^{4} + \frac{34}{111} a^{3} - \frac{4}{37} a^{2} - \frac{43}{111} a - \frac{50}{111}$, $\frac{1}{1776} a^{16} - \frac{1}{1776} a^{14} - \frac{1}{296} a^{13} - \frac{1}{48} a^{12} - \frac{5}{444} a^{11} - \frac{55}{1776} a^{10} + \frac{17}{888} a^{9} + \frac{19}{222} a^{8} + \frac{29}{148} a^{7} - \frac{85}{444} a^{6} - \frac{61}{444} a^{5} + \frac{23}{74} a^{4} + \frac{14}{111} a^{3} - \frac{6}{37} a^{2} - \frac{49}{111} a + \frac{17}{37}$, $\frac{1}{5736979056} a^{17} - \frac{430517}{5736979056} a^{16} - \frac{1528783}{5736979056} a^{15} + \frac{1065683}{5736979056} a^{14} + \frac{89313913}{5736979056} a^{13} + \frac{4524419}{1912326352} a^{12} - \frac{72226743}{1912326352} a^{11} - \frac{205961671}{5736979056} a^{10} + \frac{18853825}{956163176} a^{9} + \frac{78102877}{717122382} a^{8} - \frac{43691981}{478081588} a^{7} + \frac{27928714}{358561191} a^{6} - \frac{133860089}{717122382} a^{5} + \frac{41322734}{358561191} a^{4} + \frac{121953764}{358561191} a^{3} - \frac{150033610}{358561191} a^{2} + \frac{5452512}{119520397} a - \frac{53632477}{119520397}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 583795719975 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6912 |
| The 30 conjugacy class representatives for t18n520 |
| Character table for t18n520 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.220521111330816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.12.26.87 | $x^{12} + 4 x^{11} + 2 x^{10} + 2 x^{8} + 2 x^{6} + 2 x^{4} + 4 x^{3} + 4 x^{2} + 2$ | $12$ | $1$ | $26$ | 12T48 | $[4/3, 4/3, 2, 3]_{3}^{2}$ | |
| $3$ | 3.9.12.17 | $x^{9} + 6 x^{8} + 6 x^{6} + 27$ | $3$ | $3$ | $12$ | $C_3^2 : S_3 $ | $[2, 2]^{6}$ |
| 3.9.12.17 | $x^{9} + 6 x^{8} + 6 x^{6} + 27$ | $3$ | $3$ | $12$ | $C_3^2 : S_3 $ | $[2, 2]^{6}$ | |
| $37$ | 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 37.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.8.6.2 | $x^{8} + 333 x^{4} + 34225$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |