Normalized defining polynomial
\( x^{18} - 9 x^{17} - 9 x^{16} + 276 x^{15} - 360 x^{14} - 3024 x^{13} + 6864 x^{12} + 13338 x^{11} - 44460 x^{10} - 12218 x^{9} + 118251 x^{8} - 56754 x^{7} - 104295 x^{6} + 107991 x^{5} - 10584 x^{4} - 23004 x^{3} + 8559 x^{2} - 297 x - 159 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10443002414754749649962321483613=3^{44}\cdot 13^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(351=3^{3}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{351}(64,·)$, $\chi_{351}(1,·)$, $\chi_{351}(259,·)$, $\chi_{351}(196,·)$, $\chi_{351}(142,·)$, $\chi_{351}(79,·)$, $\chi_{351}(337,·)$, $\chi_{351}(274,·)$, $\chi_{351}(25,·)$, $\chi_{351}(220,·)$, $\chi_{351}(157,·)$, $\chi_{351}(103,·)$, $\chi_{351}(40,·)$, $\chi_{351}(298,·)$, $\chi_{351}(235,·)$, $\chi_{351}(181,·)$, $\chi_{351}(118,·)$, $\chi_{351}(313,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{475841472328900505091739568831} a^{17} + \frac{237034030310632616109384031477}{475841472328900505091739568831} a^{16} + \frac{187270903909199858009483579929}{475841472328900505091739568831} a^{15} + \frac{24341380056272874695412324780}{475841472328900505091739568831} a^{14} + \frac{70835545735500653554426117314}{475841472328900505091739568831} a^{13} + \frac{24184210412881534780267346753}{475841472328900505091739568831} a^{12} + \frac{198101714925313460732624596701}{475841472328900505091739568831} a^{11} - \frac{227517229316689588553534659327}{475841472328900505091739568831} a^{10} + \frac{23964182464906176753334852854}{475841472328900505091739568831} a^{9} + \frac{168153873620399331930785280101}{475841472328900505091739568831} a^{8} + \frac{133385832147417720946508847963}{475841472328900505091739568831} a^{7} - \frac{20322045221946619730526950065}{475841472328900505091739568831} a^{6} - \frac{182881977952094186987025620716}{475841472328900505091739568831} a^{5} - \frac{142680769883609378811110671537}{475841472328900505091739568831} a^{4} + \frac{116481737738676652518414470275}{475841472328900505091739568831} a^{3} + \frac{119434844828192048182955617720}{475841472328900505091739568831} a^{2} - \frac{170741573424693243264312422128}{475841472328900505091739568831} a - \frac{3304169787961732981598450548}{8978140987337745379089425827}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9384873349.02 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), \(\Q(\zeta_{9})^+\), 6.6.14414517.1, \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | $18$ | $18$ | $18$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{18}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.22.8 | $x^{9} + 18 x^{7} + 24 x^{6} + 18 x^{5} + 18 x^{3} + 3$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ |
| 3.9.22.8 | $x^{9} + 18 x^{7} + 24 x^{6} + 18 x^{5} + 18 x^{3} + 3$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ | |
| 13 | Data not computed | ||||||