Normalized defining polynomial
\( x^{18} - 97 x^{16} + 3029 x^{14} - 45783 x^{12} + 384476 x^{10} - 1887013 x^{8} + 5416578 x^{6} - 8661663 x^{4} + 6787502 x^{2} - 1874161 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10311469437985706977260338248155136=2^{18}\cdot 11^{6}\cdot 37^{8}\cdot 43^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $77.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 37, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{37} a^{12} + \frac{14}{37} a^{10} - \frac{5}{37} a^{8} - \frac{14}{37} a^{6} + \frac{9}{37} a^{4} - \frac{13}{37} a^{2}$, $\frac{1}{37} a^{13} + \frac{14}{37} a^{11} - \frac{5}{37} a^{9} - \frac{14}{37} a^{7} + \frac{9}{37} a^{5} - \frac{13}{37} a^{3}$, $\frac{1}{4107} a^{14} + \frac{17}{1369} a^{12} - \frac{125}{1369} a^{10} + \frac{464}{1369} a^{8} - \frac{916}{4107} a^{6} - \frac{1937}{4107} a^{4} - \frac{10}{37} a^{2} + \frac{1}{3}$, $\frac{1}{4107} a^{15} + \frac{17}{1369} a^{13} - \frac{125}{1369} a^{11} + \frac{464}{1369} a^{9} - \frac{916}{4107} a^{7} - \frac{1937}{4107} a^{5} - \frac{10}{37} a^{3} + \frac{1}{3} a$, $\frac{1}{991848178630195599} a^{16} + \frac{42900369490211}{991848178630195599} a^{14} - \frac{1955130698277062}{330616059543398533} a^{12} - \frac{11526754549596356}{330616059543398533} a^{10} - \frac{426527667941945074}{991848178630195599} a^{8} - \frac{162533967923492821}{991848178630195599} a^{6} + \frac{9772369246106012}{26806707530545827} a^{4} + \frac{194783160380065}{724505608933671} a^{2} - \frac{2697699381328}{19581232673883}$, $\frac{1}{991848178630195599} a^{17} + \frac{42900369490211}{991848178630195599} a^{15} - \frac{1955130698277062}{330616059543398533} a^{13} - \frac{11526754549596356}{330616059543398533} a^{11} - \frac{426527667941945074}{991848178630195599} a^{9} - \frac{162533967923492821}{991848178630195599} a^{7} + \frac{9772369246106012}{26806707530545827} a^{5} + \frac{194783160380065}{724505608933671} a^{3} - \frac{2697699381328}{19581232673883} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 177034895565 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10368 |
| The 40 conjugacy class representatives for t18n566 |
| Character table for t18n566 is not computed |
Intermediate fields
| 3.3.473.1, 9.9.144872805473.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 37 | Data not computed | ||||||
| $43$ | 43.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 43.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 43.6.3.1 | $x^{6} - 86 x^{4} + 1849 x^{2} - 7950700$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 43.6.3.1 | $x^{6} - 86 x^{4} + 1849 x^{2} - 7950700$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |