Normalized defining polynomial
\( x^{18} - 9 x^{17} - 11 x^{16} + 292 x^{15} - 406 x^{14} - 2982 x^{13} + 6882 x^{12} + 13412 x^{11} - 41286 x^{10} - 29674 x^{9} + 122098 x^{8} + 34914 x^{7} - 191308 x^{6} - 28892 x^{5} + 151141 x^{4} + 25097 x^{3} - 46372 x^{2} - 12897 x - 739 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(101603259838455245078148283203125=5^{9}\cdot 139^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 139$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{10330} a^{14} - \frac{7}{10330} a^{13} + \frac{711}{10330} a^{12} + \frac{99}{1033} a^{11} - \frac{2177}{10330} a^{10} + \frac{1252}{5165} a^{9} - \frac{1163}{10330} a^{8} - \frac{4361}{10330} a^{7} - \frac{1991}{5165} a^{6} - \frac{161}{5165} a^{5} + \frac{4527}{10330} a^{4} + \frac{5061}{10330} a^{3} - \frac{1933}{10330} a^{2} + \frac{151}{10330} a + \frac{4011}{10330}$, $\frac{1}{10330} a^{15} + \frac{331}{5165} a^{13} + \frac{401}{5165} a^{12} - \frac{206}{5165} a^{11} - \frac{481}{2066} a^{10} + \frac{87}{1033} a^{9} - \frac{1086}{5165} a^{8} - \frac{3519}{10330} a^{7} + \frac{1397}{5165} a^{6} - \frac{1446}{5165} a^{5} - \frac{457}{1033} a^{4} - \frac{2661}{10330} a^{3} + \frac{423}{2066} a^{2} - \frac{97}{10330} a - \frac{2913}{10330}$, $\frac{1}{106708900} a^{16} - \frac{2}{26677225} a^{15} + \frac{733}{26677225} a^{14} - \frac{5096}{26677225} a^{13} + \frac{4315771}{53354450} a^{12} + \frac{914913}{53354450} a^{11} + \frac{234445}{1067089} a^{10} - \frac{9439731}{53354450} a^{9} + \frac{4607888}{26677225} a^{8} + \frac{1788829}{26677225} a^{7} + \frac{7650704}{26677225} a^{6} + \frac{8806523}{53354450} a^{5} - \frac{688024}{26677225} a^{4} + \frac{3041729}{53354450} a^{3} + \frac{48030153}{106708900} a^{2} - \frac{8366073}{26677225} a - \frac{5948361}{106708900}$, $\frac{1}{474534478300} a^{17} + \frac{443}{94906895660} a^{16} - \frac{3329973}{118633619575} a^{15} + \frac{3602558}{118633619575} a^{14} - \frac{5489154393}{47453447830} a^{13} + \frac{37884740971}{237267239150} a^{12} - \frac{4892039368}{118633619575} a^{11} + \frac{6807096707}{118633619575} a^{10} + \frac{27267932073}{237267239150} a^{9} + \frac{13995321888}{118633619575} a^{8} + \frac{16692896341}{118633619575} a^{7} + \frac{106658022897}{237267239150} a^{6} + \frac{39245097608}{118633619575} a^{5} + \frac{21290847021}{47453447830} a^{4} + \frac{46659415007}{474534478300} a^{3} + \frac{103371194437}{474534478300} a^{2} + \frac{172345021283}{474534478300} a + \frac{130261423197}{474534478300}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9517414523.29 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 3.3.96605.1 x3, 3.3.19321.1, 6.6.46662630125.2, 6.6.46662630125.1, 6.6.2415125.1 x2, 9.9.901568676645125.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.6.2415125.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $139$ | 139.9.6.1 | $x^{9} + 2085 x^{6} + 1429754 x^{3} + 335702375$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 139.9.6.1 | $x^{9} + 2085 x^{6} + 1429754 x^{3} + 335702375$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |