Normalized defining polynomial
\( x^{18} - 318 x^{16} - 212 x^{15} + 36729 x^{14} + 34980 x^{13} - 2034564 x^{12} - 2583432 x^{11} + 58781664 x^{10} + 103129520 x^{9} - 889486704 x^{8} - 2128457952 x^{7} + 6135260496 x^{6} + 21082331520 x^{5} - 6285328512 x^{4} - 77451096320 x^{3} - 82190351232 x^{2} - 18643490304 x + 6047664640 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1015634954431839220260170077569414080777988222222336=2^{35}\cdot 3^{27}\cdot 53^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $681.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5}$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{424} a^{9} + \frac{1}{8} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{424} a^{10} - \frac{1}{8} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{848} a^{11} + \frac{1}{16} a^{7} + \frac{1}{8} a^{5}$, $\frac{1}{8480} a^{12} + \frac{1}{4240} a^{11} - \frac{1}{4240} a^{10} - \frac{1}{1060} a^{9} + \frac{1}{160} a^{8} + \frac{3}{80} a^{7} - \frac{1}{20} a^{5} + \frac{9}{40} a^{4} + \frac{1}{20} a^{3} - \frac{1}{2} a^{2} - \frac{2}{5} a$, $\frac{1}{16960} a^{13} - \frac{3}{8480} a^{11} + \frac{1}{1060} a^{10} - \frac{11}{16960} a^{9} + \frac{1}{80} a^{8} + \frac{7}{80} a^{7} + \frac{3}{80} a^{6} + \frac{3}{80} a^{5} + \frac{7}{40} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{1}{10} a$, $\frac{1}{16960} a^{14} + \frac{1}{2120} a^{11} + \frac{17}{16960} a^{10} + \frac{1}{4240} a^{9} - \frac{3}{160} a^{8} - \frac{3}{80} a^{7} + \frac{3}{80} a^{6} - \frac{9}{40} a^{5} - \frac{1}{8} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{508800} a^{15} + \frac{1}{84800} a^{14} - \frac{1}{84800} a^{13} - \frac{7}{127200} a^{12} - \frac{97}{169600} a^{11} - \frac{93}{84800} a^{10} + \frac{5}{5088} a^{9} - \frac{19}{800} a^{8} + \frac{13}{800} a^{7} - \frac{11}{300} a^{6} - \frac{7}{200} a^{5} - \frac{9}{50} a^{4} + \frac{2}{15} a^{3} - \frac{8}{25} a^{2} - \frac{12}{25} a + \frac{7}{15}$, $\frac{1}{148569600} a^{16} + \frac{1}{7428480} a^{15} + \frac{229}{12380800} a^{14} + \frac{737}{37142400} a^{13} - \frac{6623}{148569600} a^{12} + \frac{553}{1547600} a^{11} - \frac{11741}{74284800} a^{10} - \frac{10859}{9285600} a^{9} + \frac{11337}{233600} a^{8} + \frac{263}{43800} a^{7} + \frac{269}{4800} a^{6} - \frac{1623}{7300} a^{5} + \frac{13669}{87600} a^{4} - \frac{3409}{21900} a^{3} - \frac{1013}{14600} a^{2} - \frac{1037}{10950} a + \frac{259}{2190}$, $\frac{1}{39227805848114521012204035332819730624000} a^{17} - \frac{454562362848664935333068180117}{169085370034976383673293255744912632000} a^{16} - \frac{1113761805560680458424260181581781}{1225868932753578781631376104150616582000} a^{15} - \frac{135204029970407955133839559991674141}{9806951462028630253051008833204932656000} a^{14} + \frac{16462297686137465721497410579800373}{7845561169622904202440807066563946124800} a^{13} - \frac{42765933272811429091502577269937203}{1961390292405726050610201766640986531200} a^{12} + \frac{5533950391472792437679915023678968853}{19613902924057260506102017666409865312000} a^{11} - \frac{2697877305116075385253631514958824511}{2451737865507157563262752208301233164000} a^{10} + \frac{739310648405299023933305693165043407}{9806951462028630253051008833204932656000} a^{9} - \frac{1857141336788399908841652176711878939}{46259205009569010627599098269834588000} a^{8} - \frac{915546726552634694523716029128120869}{92518410019138021255198196539669176000} a^{7} + \frac{590689568703908791259226023874928687}{23129602504784505313799549134917294000} a^{6} - \frac{1082433558787463269025365269076463807}{23129602504784505313799549134917294000} a^{5} - \frac{305977092217838124486072116333902231}{11564801252392252656899774567458647000} a^{4} + \frac{1476761304851343054865650729529773233}{11564801252392252656899774567458647000} a^{3} - \frac{574079548869834022406328731815592929}{1445600156549031582112471820932330875} a^{2} - \frac{1367516960912008408974154130260964987}{2891200313098063164224943641864661750} a - \frac{3592438466900717031576271867861672}{9969656252062286773189460834016075}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5212831613330000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times D_9$ (as 18T50):
| A solvable group of order 108 |
| The 18 conjugacy class representatives for $S_3\times D_9$ |
| Character table for $S_3\times D_9$ |
Intermediate fields
| \(\Q(\sqrt{6}) \), 3.3.33708.1, 6.6.436312037376.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | $18$ | $18$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | R | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.4.8.3 | $x^{4} + 6 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.3 | $x^{4} + 6 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.3 | $x^{4} + 6 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.3 | $x^{4} + 6 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| $3$ | 3.6.9.16 | $x^{6} + 3 x^{4} + 6 x^{3} + 3$ | $6$ | $1$ | $9$ | $S_3^2$ | $[3/2, 2]_{2}^{2}$ |
| 3.12.18.78 | $x^{12} - 15 x^{11} - 24 x^{10} - 15 x^{9} - 9 x^{7} + 21 x^{6} + 18 x^{5} - 9 x^{4} - 36 x^{3} + 36$ | $6$ | $2$ | $18$ | $S_3^2$ | $[3/2, 2]_{2}^{2}$ | |
| $53$ | 53.9.8.1 | $x^{9} - 53$ | $9$ | $1$ | $8$ | $D_{9}$ | $[\ ]_{9}^{2}$ |
| 53.9.8.1 | $x^{9} - 53$ | $9$ | $1$ | $8$ | $D_{9}$ | $[\ ]_{9}^{2}$ |