Normalized defining polynomial
\( x^{18} - 102 x^{16} - 68 x^{15} + 3987 x^{14} + 5316 x^{13} - 76498 x^{12} - 151956 x^{11} + 739557 x^{10} + 2038344 x^{9} - 3005856 x^{8} - 13120632 x^{7} - 852796 x^{6} + 34623792 x^{5} + 30096192 x^{4} - 16376192 x^{3} - 22127616 x^{2} + 614656 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 1]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-86460885220681483299874289528302731264=-\,2^{28}\cdot 3^{18}\cdot 7^{8}\cdot 229^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $128.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 229$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{28} a^{9} - \frac{1}{4} a^{8} - \frac{1}{7} a^{7} - \frac{5}{28} a^{6} + \frac{1}{7} a^{5} - \frac{11}{28} a^{4} - \frac{9}{28} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{28} a^{10} + \frac{3}{28} a^{8} - \frac{5}{28} a^{7} - \frac{3}{28} a^{6} - \frac{11}{28} a^{5} - \frac{1}{14} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{28} a^{11} + \frac{1}{14} a^{8} - \frac{5}{28} a^{7} + \frac{1}{7} a^{6} + \frac{3}{7} a^{4} + \frac{13}{28} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{392} a^{12} - \frac{1}{98} a^{10} + \frac{1}{196} a^{9} - \frac{31}{392} a^{8} - \frac{15}{98} a^{7} + \frac{41}{196} a^{6} - \frac{3}{7} a^{5} + \frac{9}{56} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{784} a^{13} - \frac{1}{196} a^{11} - \frac{3}{196} a^{10} + \frac{11}{784} a^{9} + \frac{12}{49} a^{8} - \frac{1}{49} a^{7} - \frac{5}{28} a^{6} + \frac{55}{112} a^{5} - \frac{3}{7} a^{4} - \frac{27}{56} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{1568} a^{14} + \frac{1}{98} a^{11} - \frac{5}{1568} a^{10} + \frac{1}{392} a^{9} + \frac{1}{14} a^{8} - \frac{4}{49} a^{7} + \frac{237}{1568} a^{6} - \frac{11}{28} a^{5} + \frac{1}{112} a^{4} + \frac{13}{56} a^{3}$, $\frac{1}{21952} a^{15} - \frac{1}{5488} a^{13} + \frac{1}{1372} a^{12} - \frac{325}{21952} a^{11} + \frac{69}{5488} a^{10} - \frac{95}{5488} a^{9} - \frac{29}{196} a^{8} - \frac{181}{3136} a^{7} - \frac{95}{392} a^{6} - \frac{99}{224} a^{5} - \frac{33}{112} a^{4} + \frac{25}{56} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{21952} a^{16} - \frac{1}{5488} a^{14} - \frac{3}{5488} a^{13} + \frac{11}{21952} a^{12} + \frac{97}{5488} a^{11} + \frac{45}{5488} a^{10} + \frac{9}{784} a^{9} - \frac{197}{3136} a^{8} - \frac{27}{392} a^{7} + \frac{99}{1568} a^{6} + \frac{3}{7} a^{5} + \frac{1}{8} a^{4} - \frac{3}{56} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{4822941679820742957961576677632} a^{17} - \frac{7524717148173443645380267}{344495834272910211282969762688} a^{16} + \frac{1093637915093720046175569}{344495834272910211282969762688} a^{15} - \frac{32647558138762529010700161}{301433854988796434872598542352} a^{14} + \frac{955864833316915653947698787}{4822941679820742957961576677632} a^{13} - \frac{2281297420379191464733785125}{2411470839910371478980788338816} a^{12} - \frac{886014405525265089964849705}{344495834272910211282969762688} a^{11} - \frac{9334740480780864409624095741}{602867709977592869745197084704} a^{10} - \frac{25610504380825562534184415099}{4822941679820742957961576677632} a^{9} + \frac{707798906809233107486512805}{344495834272910211282969762688} a^{8} + \frac{333475071670114533050752541}{24606845305207872234497840192} a^{7} - \frac{4402007500560293597141850361}{21530989642056888205185610168} a^{6} + \frac{497509256573642945264776309}{24606845305207872234497840192} a^{5} + \frac{4291188790243180178763718269}{12303422652603936117248920096} a^{4} - \frac{2888005751616681448365749107}{6151711326301968058624460048} a^{3} + \frac{7254205884944301652622395}{439407951878712004187461432} a^{2} + \frac{4721385028625059981299989}{219703975939356002093730716} a - \frac{21181290676695104335007221}{109851987969678001046865358}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 95820469425200 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1119744 |
| The 174 conjugacy class representatives for t18n930 are not computed |
| Character table for t18n930 is not computed |
Intermediate fields
| 3.3.229.1, 6.6.3356224.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.4.4.3 | $x^{4} + 2 x^{2} + 4 x + 4$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.8.18.34 | $x^{8} + 2 x^{6} + 8 x^{5} + 6 x^{4} + 28$ | $4$ | $2$ | $18$ | $(C_4^2 : C_2):C_2$ | $[2, 2, 3, 7/2, 7/2]^{2}$ | |
| $3$ | 3.9.9.4 | $x^{9} + 3 x^{6} + 9 x^{4} + 54$ | $3$ | $3$ | $9$ | $(C_3^2:C_3):C_2$ | $[3/2, 3/2, 3/2]_{2}^{3}$ |
| 3.9.9.8 | $x^{9} + 6 x^{7} + 18 x^{3} + 27$ | $3$ | $3$ | $9$ | $(C_3^2:C_3):C_2$ | $[3/2, 3/2, 3/2]_{2}^{3}$ | |
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.12.8.2 | $x^{12} + 49 x^{6} - 1029 x^{3} + 12005$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| 229 | Data not computed | ||||||