Normalized defining polynomial
\( x^{18} - 4 x^{17} - 366 x^{16} + 1430 x^{15} + 49533 x^{14} - 165084 x^{13} - 3254625 x^{12} + 7502992 x^{11} + 111825837 x^{10} - 85120626 x^{9} - 1961084581 x^{8} - 2485979841 x^{7} + 13343030483 x^{6} + 51709273254 x^{5} + 37316894223 x^{4} - 88724053380 x^{3} - 103842435272 x^{2} - 33737466006 x - 2987895481 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 1]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-794162325712462634078046534994236954533858957938503=-\,3^{12}\cdot 107^{6}\cdot 397^{3}\cdot 4519^{3}\cdot 55661^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $672.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 107, 397, 4519, 55661$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{137031697479999187545304462216734101248312569777551719770169239908400464982806579316413399} a^{17} - \frac{66007606931553149366163584009246017505849997421059092540889763094849767474297809012458781}{137031697479999187545304462216734101248312569777551719770169239908400464982806579316413399} a^{16} - \frac{12689260431477829334610536788002497223639651462862978648570036647552628224594521608207867}{137031697479999187545304462216734101248312569777551719770169239908400464982806579316413399} a^{15} - \frac{22262038804610538309046489941737451028893349477129967079198092152274398341677549206984351}{137031697479999187545304462216734101248312569777551719770169239908400464982806579316413399} a^{14} - \frac{578227521255935988134985829099823209210280900557472082494530575117163809441091831107076}{137031697479999187545304462216734101248312569777551719770169239908400464982806579316413399} a^{13} - \frac{67934222039650269154665384895552209100113430340904566512569970306239594422781167651677041}{137031697479999187545304462216734101248312569777551719770169239908400464982806579316413399} a^{12} + \frac{40468478045582814131846249292723532773313202240408513019237583181692863474872299158987553}{137031697479999187545304462216734101248312569777551719770169239908400464982806579316413399} a^{11} + \frac{31994978909488207955328414229271199667592927632612579162589944372765882367921807031629811}{137031697479999187545304462216734101248312569777551719770169239908400464982806579316413399} a^{10} + \frac{62702857335655762476766939557560960485566712147536038628787370018103420221274455334098313}{137031697479999187545304462216734101248312569777551719770169239908400464982806579316413399} a^{9} - \frac{1855037160964690702120606302198339052649669558281716016188797473345728052128581884627132}{137031697479999187545304462216734101248312569777551719770169239908400464982806579316413399} a^{8} + \frac{1306252123972214795213746992954453687762999047821954088130299996281511430629845600220571}{4420377338064489920816272974733358104784276444437152250650620642206466612348599332787529} a^{7} - \frac{30156612811693589382437233687334248684251876169387875622172547754235831534330631707478676}{137031697479999187545304462216734101248312569777551719770169239908400464982806579316413399} a^{6} + \frac{67169376904330205856261682522096128391577291238649631265194289956334263101176159867753792}{137031697479999187545304462216734101248312569777551719770169239908400464982806579316413399} a^{5} - \frac{59227581882984209890860505498670438829236210315300777560183578632788475905470803573879947}{137031697479999187545304462216734101248312569777551719770169239908400464982806579316413399} a^{4} - \frac{59521371412091285412586802617242708297837689506167875623960104019677108881472478176082294}{137031697479999187545304462216734101248312569777551719770169239908400464982806579316413399} a^{3} - \frac{64947144358785347839722128679921911359571327934220242528468606576047597861269558885822587}{137031697479999187545304462216734101248312569777551719770169239908400464982806579316413399} a^{2} - \frac{6190532700081561862337150357995497495445746504831401468542481371227913395538503595074911}{137031697479999187545304462216734101248312569777551719770169239908400464982806579316413399} a - \frac{41592447830217835502038325481191738355495707521441280597684738107609847888568614425973826}{137031697479999187545304462216734101248312569777551719770169239908400464982806579316413399}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 50114416114400000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2239488 |
| The 255 conjugacy class representatives for t18n945 are not computed |
| Character table for t18n945 is not computed |
Intermediate fields
| 3.3.321.1, 6.6.30868474835680029.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.12.12.29 | $x^{12} + 3 x + 3$ | $12$ | $1$ | $12$ | 12T84 | $[9/8, 9/8]_{8}^{2}$ | |
| $107$ | 107.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 107.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 107.12.6.1 | $x^{12} + 14700516 x^{6} - 14025517307 x^{2} + 54026292666564$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 397 | Data not computed | ||||||
| 4519 | Data not computed | ||||||
| 55661 | Data not computed | ||||||