Normalized defining polynomial
\( x^{18} - 4 x^{17} - 36 x^{16} + 118 x^{15} + 552 x^{14} - 1126 x^{13} - 4873 x^{12} + 2699 x^{11} + 22549 x^{10} + 16738 x^{9} - 21488 x^{8} - 33368 x^{7} - 4380 x^{6} + 13795 x^{5} + 6374 x^{4} - 1079 x^{3} - 981 x^{2} - 13 x + 41 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 1]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-33998313476060924767019948582143=-\,7^{13}\cdot 83^{6}\cdot 181^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 83, 181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} - \frac{2}{7} a^{11} - \frac{2}{7} a^{10} - \frac{3}{7} a^{9} - \frac{3}{7} a^{8} - \frac{1}{7} a^{7} + \frac{1}{7} a^{6} + \frac{2}{7} a^{3} + \frac{3}{7} a^{2} - \frac{3}{7} a - \frac{1}{7}$, $\frac{1}{7} a^{13} + \frac{1}{7} a^{11} - \frac{2}{7} a^{9} - \frac{1}{7} a^{7} + \frac{2}{7} a^{6} + \frac{2}{7} a^{4} + \frac{3}{7} a^{2} - \frac{2}{7}$, $\frac{1}{7} a^{14} + \frac{2}{7} a^{11} + \frac{3}{7} a^{9} + \frac{2}{7} a^{8} + \frac{3}{7} a^{7} - \frac{1}{7} a^{6} + \frac{2}{7} a^{5} + \frac{1}{7} a^{3} - \frac{3}{7} a^{2} + \frac{1}{7} a + \frac{1}{7}$, $\frac{1}{49} a^{15} - \frac{3}{49} a^{14} - \frac{2}{49} a^{13} - \frac{3}{49} a^{12} + \frac{9}{49} a^{11} + \frac{13}{49} a^{10} + \frac{5}{49} a^{9} - \frac{23}{49} a^{8} + \frac{18}{49} a^{7} - \frac{11}{49} a^{6} - \frac{20}{49} a^{5} + \frac{18}{49} a^{4} - \frac{16}{49} a^{3} + \frac{3}{49} a^{2} + \frac{6}{49} a - \frac{1}{49}$, $\frac{1}{343} a^{16} - \frac{1}{343} a^{15} + \frac{20}{343} a^{14} + \frac{3}{49} a^{13} - \frac{18}{343} a^{12} + \frac{157}{343} a^{11} - \frac{74}{343} a^{10} + \frac{127}{343} a^{9} - \frac{15}{49} a^{8} - \frac{45}{343} a^{7} - \frac{19}{49} a^{6} - \frac{113}{343} a^{5} - \frac{22}{343} a^{4} + \frac{6}{343} a^{3} + \frac{47}{343} a^{2} + \frac{151}{343} a - \frac{58}{343}$, $\frac{1}{4547972845358201} a^{17} - \frac{1305377897830}{4547972845358201} a^{16} + \frac{25898908890138}{4547972845358201} a^{15} - \frac{94947641921848}{4547972845358201} a^{14} - \frac{27294548792466}{4547972845358201} a^{13} - \frac{29638996993394}{4547972845358201} a^{12} + \frac{261907006776641}{4547972845358201} a^{11} + \frac{16251407700539}{92815772354249} a^{10} - \frac{646978404577202}{4547972845358201} a^{9} - \frac{1603047754362841}{4547972845358201} a^{8} - \frac{1052786344222472}{4547972845358201} a^{7} + \frac{446187621877038}{4547972845358201} a^{6} - \frac{1562925970856337}{4547972845358201} a^{5} - \frac{1369514108515276}{4547972845358201} a^{4} - \frac{1762375339810005}{4547972845358201} a^{3} + \frac{189690942263569}{649710406479743} a^{2} - \frac{2031783544035190}{4547972845358201} a + \frac{2067030559693172}{4547972845358201}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11775547439.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 165888 |
| The 192 conjugacy class representatives for t18n839 are not computed |
| Character table for t18n839 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.9.26552265046321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | $18$ | $18$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 83 | Data not computed | ||||||
| $181$ | $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 181.2.0.1 | $x^{2} - x + 18$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 181.2.1.2 | $x^{2} + 362$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 181.2.0.1 | $x^{2} - x + 18$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 181.2.1.2 | $x^{2} + 362$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 181.2.0.1 | $x^{2} - x + 18$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 181.4.2.1 | $x^{4} + 6335 x^{2} + 10614564$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |