Normalized defining polynomial
\( x^{18} - 186 x^{16} - 124 x^{15} + 13527 x^{14} + 18036 x^{13} - 500656 x^{12} - 982368 x^{11} + 10023315 x^{10} + 25851304 x^{9} - 103411782 x^{8} - 343327668 x^{7} + 427284889 x^{6} + 2106458820 x^{5} + 175340160 x^{4} - 4295389120 x^{3} - 1947556800 x^{2} + 1854816000 x - 123654400 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 1]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-13204805800957263883631911003213434716160000=-\,2^{24}\cdot 3^{18}\cdot 5^{4}\cdot 37^{9}\cdot 67\cdot 139^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $248.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 37, 67, 139$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{8} a^{3}$, $\frac{1}{8} a^{12} - \frac{1}{2} a^{6} - \frac{3}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{13} + \frac{1}{8} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{14} + \frac{1}{8} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{11120} a^{15} - \frac{93}{5560} a^{13} - \frac{31}{2780} a^{12} - \frac{373}{11120} a^{11} + \frac{339}{2780} a^{10} - \frac{16}{695} a^{9} - \frac{257}{2780} a^{8} - \frac{273}{2224} a^{7} - \frac{1369}{2780} a^{6} - \frac{671}{5560} a^{5} - \frac{28}{695} a^{4} + \frac{1669}{11120} a^{3}$, $\frac{1}{44480} a^{16} - \frac{93}{22240} a^{14} - \frac{31}{11120} a^{13} + \frac{2407}{44480} a^{12} + \frac{339}{11120} a^{11} - \frac{4}{695} a^{10} - \frac{119}{1390} a^{9} + \frac{839}{8896} a^{8} + \frac{1053}{5560} a^{7} + \frac{7669}{22240} a^{6} - \frac{2197}{11120} a^{5} + \frac{10009}{44480} a^{4} - \frac{7}{16} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a$, $\frac{1}{49613931173576671516995321751952179063933123603102037120} a^{17} + \frac{45607823682292211071096809330331382333703831855303}{12403482793394167879248830437988044765983280900775509280} a^{16} - \frac{90991950777739424722169917586027943087987453572121}{4961393117357667151699532175195217906393312360310203712} a^{15} + \frac{447449228565108750023179923220796688198518829440844351}{12403482793394167879248830437988044765983280900775509280} a^{14} - \frac{1594262031284087510339027341937248585414814345431138537}{49613931173576671516995321751952179063933123603102037120} a^{13} - \frac{379399593320416281141854473818322347929745378549103583}{6201741396697083939624415218994022382991640450387754640} a^{12} + \frac{164676656002379120136735652908826371640910421139880683}{3100870698348541969812207609497011191495820225193877320} a^{11} - \frac{289052000047142043666105510064710886616993524895135099}{3100870698348541969812207609497011191495820225193877320} a^{10} - \frac{1632013274833115117476200960410090473781968711016745677}{49613931173576671516995321751952179063933123603102037120} a^{9} - \frac{508778971928476173946536111289607700164237123870008281}{12403482793394167879248830437988044765983280900775509280} a^{8} - \frac{4043221491003182518018776438710293570526021796230215827}{24806965586788335758497660875976089531966561801551018560} a^{7} + \frac{3020503572428412749365898544609136124477416508101209453}{12403482793394167879248830437988044765983280900775509280} a^{6} - \frac{14386801517052582552644572613528434342260986748548500679}{49613931173576671516995321751952179063933123603102037120} a^{5} - \frac{103972584118483797373197056994500635916057116986275745}{620174139669708393962441521899402238299164045038775464} a^{4} + \frac{72605902360512228353308847070090574970245400003251243}{387608837293567746226525951187126398936977528149234665} a^{3} - \frac{808968032456070446896281981306190609867306572170981}{4461684458055456071672241164743900994958014712509176} a^{2} - \frac{343148469072734414270524325054503652418899883221067}{1115421114513864017918060291185975248739503678127294} a - \frac{33628866549419827219455086511341368822923011874445}{557710557256932008959030145592987624369751839063647}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5329902372580000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 279936 |
| The 174 conjugacy class representatives for t18n874 are not computed |
| Character table for t18n874 is not computed |
Intermediate fields
| \(\Q(\sqrt{37}) \), 3.3.148.1 x3, 6.6.810448.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.9.0.1}{9} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.20.35 | $x^{12} - 18 x^{10} - 21 x^{8} - 8 x^{6} + 19 x^{4} - 6 x^{2} + 21$ | $6$ | $2$ | $20$ | 12T30 | $[2, 8/3, 8/3]_{3}^{2}$ | |
| $3$ | 3.9.9.6 | $x^{9} + 3 x^{7} + 3 x^{6} + 18 x^{4} + 54$ | $3$ | $3$ | $9$ | $S_3\times C_3$ | $[3/2]_{2}^{3}$ |
| 3.9.9.2 | $x^{9} + 18 x^{3} + 27 x + 27$ | $3$ | $3$ | $9$ | $C_3^2 : S_3 $ | $[3/2, 3/2]_{2}^{3}$ | |
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.6.4.2 | $x^{6} - 5 x^{3} + 50$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 37 | Data not computed | ||||||
| 67 | Data not computed | ||||||
| $139$ | $\Q_{139}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 139.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 139.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 139.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 139.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 139.3.2.3 | $x^{3} - 2224$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 139.3.2.2 | $x^{3} + 556$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |