Normalized defining polynomial
\( x^{18} - 2 x^{17} - 42 x^{16} + 167 x^{15} + 356 x^{14} - 3424 x^{13} + 4855 x^{12} + 18899 x^{11} - 58939 x^{10} - 19557 x^{9} + 158714 x^{8} + 39695 x^{7} - 182824 x^{6} - 98664 x^{5} + 53095 x^{4} + 47038 x^{3} + 2083 x^{2} - 5140 x - 1039 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(981630043037493479115365283435793=97^{3}\cdot 32009^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $97, 32009$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{14} - \frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{12} a^{16} + \frac{5}{12} a^{14} + \frac{5}{12} a^{13} + \frac{5}{12} a^{12} + \frac{1}{12} a^{11} - \frac{1}{3} a^{10} + \frac{1}{6} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{5}{12} a^{6} + \frac{1}{6} a^{5} + \frac{1}{12} a^{4} - \frac{1}{6} a^{2} - \frac{1}{6} a + \frac{1}{12}$, $\frac{1}{8155477566735677110834540356912} a^{17} + \frac{35704128239820012900477778537}{8155477566735677110834540356912} a^{16} + \frac{420381245935963995336348266131}{2718492522245225703611513452304} a^{15} - \frac{200007878967551708057186334865}{1359246261122612851805756726152} a^{14} + \frac{1039150031374056535856227758785}{4077738783367838555417270178456} a^{13} + \frac{1813399082151990972832021110907}{4077738783367838555417270178456} a^{12} + \frac{754385399855118189046634019987}{2718492522245225703611513452304} a^{11} + \frac{419068583813442383494566457315}{4077738783367838555417270178456} a^{10} + \frac{415344315268854751884590108317}{2718492522245225703611513452304} a^{9} - \frac{314612818158449109083670751015}{1019434695841959638854317544614} a^{8} + \frac{324535032067684282908009004851}{1359246261122612851805756726152} a^{7} - \frac{1170006513067978481791585569659}{8155477566735677110834540356912} a^{6} - \frac{76895503652476872686259913083}{2718492522245225703611513452304} a^{5} + \frac{975673018686710207443890522127}{2718492522245225703611513452304} a^{4} + \frac{330561730467282580446178573417}{1359246261122612851805756726152} a^{3} + \frac{9166130336665727815958197497}{169905782640326606475719590769} a^{2} - \frac{3675177057038284674720849953485}{8155477566735677110834540356912} a - \frac{1054169299634343609131118016291}{8155477566735677110834540356912}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23865071763.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6912 |
| The 48 conjugacy class representatives for t18n521 |
| Character table for t18n521 is not computed |
Intermediate fields
| 3.3.32009.4, 9.9.32795655776729.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $97$ | 97.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 97.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 97.6.0.1 | $x^{6} - x + 10$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 97.6.3.2 | $x^{6} - 9409 x^{2} + 4563365$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 32009 | Data not computed | ||||||