Normalized defining polynomial
\( x^{18} - 4 x^{17} - 43 x^{16} + 140 x^{15} + 697 x^{14} - 1332 x^{13} - 5877 x^{12} + 286 x^{11} + 24651 x^{10} + 46224 x^{9} - 7313 x^{8} - 142480 x^{7} - 209892 x^{6} - 124454 x^{5} + 64828 x^{4} + 183050 x^{3} + 109343 x^{2} + 14314 x - 587 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(865961613414533621361938102747136=2^{18}\cdot 3^{6}\cdot 7^{12}\cdot 41^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{56} a^{15} - \frac{5}{56} a^{14} - \frac{1}{56} a^{13} + \frac{13}{56} a^{12} - \frac{1}{28} a^{11} - \frac{5}{28} a^{10} + \frac{1}{7} a^{9} - \frac{5}{28} a^{8} - \frac{1}{56} a^{7} + \frac{27}{56} a^{6} + \frac{5}{56} a^{5} - \frac{3}{56} a^{4} - \frac{13}{56} a^{3} - \frac{3}{56} a^{2} - \frac{25}{56} a + \frac{27}{56}$, $\frac{1}{112} a^{16} + \frac{1}{56} a^{14} - \frac{5}{28} a^{13} - \frac{3}{16} a^{12} - \frac{5}{28} a^{11} - \frac{1}{8} a^{10} + \frac{1}{56} a^{9} + \frac{5}{112} a^{8} + \frac{11}{56} a^{7} - \frac{17}{56} a^{5} - \frac{1}{4} a^{4} + \frac{1}{7} a^{3} - \frac{5}{14} a^{2} - \frac{1}{8} a - \frac{33}{112}$, $\frac{1}{48461150616529471399453634118688} a^{17} - \frac{211214346199972696866555278125}{48461150616529471399453634118688} a^{16} + \frac{156568779291233721160807090647}{24230575308264735699726817059344} a^{15} + \frac{820335996051277565807578423795}{24230575308264735699726817059344} a^{14} + \frac{10134916816759683760498768254851}{48461150616529471399453634118688} a^{13} + \frac{11314660630336906636781422257289}{48461150616529471399453634118688} a^{12} - \frac{1370082004851380662781253134137}{24230575308264735699726817059344} a^{11} + \frac{48440057803328484551642810225}{432688844790441708923693161774} a^{10} + \frac{4642211712044252779106659289715}{48461150616529471399453634118688} a^{9} + \frac{4500482895833244269498557773389}{48461150616529471399453634118688} a^{8} - \frac{4369204572425292918686804944113}{24230575308264735699726817059344} a^{7} - \frac{10715712306676488858121079062415}{24230575308264735699726817059344} a^{6} - \frac{3175558995824162636183583287663}{24230575308264735699726817059344} a^{5} + \frac{141041150970647609804643531123}{865377689580883417847386323548} a^{4} - \frac{3457686273729067160713887035133}{12115287654132367849863408529672} a^{3} - \frac{9858287272309731586433998424101}{24230575308264735699726817059344} a^{2} + \frac{20251657055752029388703225229601}{48461150616529471399453634118688} a + \frac{7417994375567949217924560343489}{48461150616529471399453634118688}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24933985535.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 96 conjugacy class representatives for t18n657 are not computed |
| Character table for t18n657 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.9.574470067776192.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| $3$ | 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 41 | Data not computed | ||||||