Normalized defining polynomial
\( x^{18} - 8 x^{17} - 19 x^{16} + 307 x^{15} - 777 x^{14} - 3482 x^{13} + 31041 x^{12} - 4813 x^{11} - 458745 x^{10} + 344648 x^{9} + 3603040 x^{8} - 2161638 x^{7} - 15859530 x^{6} + 3554115 x^{5} + 36670560 x^{4} + 5935818 x^{3} - 34856322 x^{2} - 15287292 x + 3189027 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(862377210136833404213866130883740529=3^{10}\cdot 53^{4}\cdot 97^{2}\cdot 107^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $99.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 53, 97, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{7} a^{16} - \frac{2}{7} a^{15} + \frac{2}{7} a^{14} + \frac{1}{7} a^{13} + \frac{2}{7} a^{12} - \frac{1}{7} a^{10} - \frac{3}{7} a^{9} - \frac{2}{7} a^{8} - \frac{3}{7} a^{7} + \frac{3}{7} a^{5} + \frac{3}{7} a^{4} + \frac{3}{7} a^{3} + \frac{1}{7} a^{2} + \frac{1}{7}$, $\frac{1}{132302870854529299610896756389515131870078065074298511751} a^{17} + \frac{3223704943042438388686638952958686549244890536947134502}{132302870854529299610896756389515131870078065074298511751} a^{16} + \frac{57677664291031180339783743436765505421728910919386245764}{132302870854529299610896756389515131870078065074298511751} a^{15} + \frac{35831608677952916771790305528036705762638808555773662372}{132302870854529299610896756389515131870078065074298511751} a^{14} + \frac{30589862796898056406276304264307247708093505415085108950}{132302870854529299610896756389515131870078065074298511751} a^{13} + \frac{5701086477721745586165984732299428828551505152051573929}{132302870854529299610896756389515131870078065074298511751} a^{12} + \frac{17266079634387981988345337068652461053028625612222160628}{132302870854529299610896756389515131870078065074298511751} a^{11} - \frac{5935449210001211956346467283970415364125039215892324539}{18900410122075614230128108055645018838582580724899787393} a^{10} + \frac{5312322737552224514084244294305006143001304490070061110}{18900410122075614230128108055645018838582580724899787393} a^{9} - \frac{53696471845375285338109322628757932056148129719449268599}{132302870854529299610896756389515131870078065074298511751} a^{8} + \frac{26475091297047906048719030924238286915625421840603934131}{132302870854529299610896756389515131870078065074298511751} a^{7} - \frac{13986836572316763037167003508381697383294774847655381582}{132302870854529299610896756389515131870078065074298511751} a^{6} + \frac{61053745038255675067783656423431346617526129050912676888}{132302870854529299610896756389515131870078065074298511751} a^{5} + \frac{49034918434363804290961649257124125419274418629182708311}{132302870854529299610896756389515131870078065074298511751} a^{4} - \frac{47619369401889165027134481403844466944565642174640541770}{132302870854529299610896756389515131870078065074298511751} a^{3} + \frac{51515332446577782641385851586961205162146696927143750234}{132302870854529299610896756389515131870078065074298511751} a^{2} - \frac{29784841902244281993649572433707586285299826761139858132}{132302870854529299610896756389515131870078065074298511751} a - \frac{40787710400023812288615563094163270907443668435004878993}{132302870854529299610896756389515131870078065074298511751}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2095865876680 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 41472 |
| The 37 conjugacy class representatives for t18n713 |
| Character table for t18n713 is not computed |
Intermediate fields
| 3.3.321.1, 9.9.29824410535929.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.8.7.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ | |
| 53 | Data not computed | ||||||
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 97.6.0.1 | $x^{6} - x + 10$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 97.6.0.1 | $x^{6} - x + 10$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 107 | Data not computed | ||||||