Normalized defining polynomial
\( x^{18} - 54 x^{16} - 50 x^{15} + 993 x^{14} + 1995 x^{13} - 6386 x^{12} - 26028 x^{11} - 11313 x^{10} + 116072 x^{9} + 271530 x^{8} + 31032 x^{7} - 795618 x^{6} - 1245204 x^{5} - 20277 x^{4} + 1846080 x^{3} + 1754109 x^{2} + 374706 x - 83079 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8210596569826381664214775617297=3^{24}\cdot 73^{6}\cdot 577^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 73, 577$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{9} + \frac{1}{3} a^{6} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{10} + \frac{1}{3} a^{7} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{11} + \frac{1}{3} a^{8} - \frac{1}{3} a^{5}$, $\frac{1}{9} a^{15} + \frac{1}{9} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{9} a^{9} - \frac{4}{9} a^{6} + \frac{1}{3} a^{3}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{13} - \frac{1}{3} a^{11} + \frac{1}{9} a^{10} - \frac{1}{3} a^{9} - \frac{4}{9} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3}$, $\frac{1}{29601350379376275358210636296466708599829529631} a^{17} - \frac{405552446902382972103662723994552162228470179}{29601350379376275358210636296466708599829529631} a^{16} - \frac{560359778145232497373378618587856414700822662}{29601350379376275358210636296466708599829529631} a^{15} - \frac{2513309748077057123603543792170242549994139231}{29601350379376275358210636296466708599829529631} a^{14} + \frac{2052123537014892373452437418318654437349128753}{29601350379376275358210636296466708599829529631} a^{13} + \frac{1271459670346822107391099457356312762085227781}{29601350379376275358210636296466708599829529631} a^{12} + \frac{7865302630748628655457801500078661551441489351}{29601350379376275358210636296466708599829529631} a^{11} - \frac{7774061424710914773968167830336703457189615677}{29601350379376275358210636296466708599829529631} a^{10} - \frac{8044832693647919872897977768245456437182075556}{29601350379376275358210636296466708599829529631} a^{9} + \frac{11794706139373305303204133173650298519890793383}{29601350379376275358210636296466708599829529631} a^{8} + \frac{10676807526689588596962347579873390829200116786}{29601350379376275358210636296466708599829529631} a^{7} - \frac{744317637366916343533064511803732213290658672}{29601350379376275358210636296466708599829529631} a^{6} + \frac{1351304200084106982611643526045421436926459116}{9867116793125425119403545432155569533276509877} a^{5} + \frac{617460252957353555185827200438261121969403090}{3289038931041808373134515144051856511092169959} a^{4} + \frac{110525108600397224598038143019831835020820844}{9867116793125425119403545432155569533276509877} a^{3} - \frac{1146606869049607331360401419891415110712650873}{3289038931041808373134515144051856511092169959} a^{2} + \frac{618013740724328308954926198157202990491716389}{3289038931041808373134515144051856511092169959} a + \frac{921415010933007007344848319345590134199762053}{3289038931041808373134515144051856511092169959}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1902256131.08 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 110 conjugacy class representatives for t18n765 are not computed |
| Character table for t18n765 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 9.9.22384826361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | $18$ | $18$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | $18$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 73 | Data not computed | ||||||
| 577 | Data not computed | ||||||