Properties

Label 18.14.7102003946...5728.2
Degree $18$
Signature $[14, 2]$
Discriminant $2^{18}\cdot 7^{13}\cdot 52879^{2}$
Root discriminant $27.30$
Ramified primes $2, 7, 52879$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 18T768

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-7, 0, 126, 0, -728, 0, 1499, 0, -1167, 0, 193, 0, 120, 0, -33, 0, -3, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 3*x^16 - 33*x^14 + 120*x^12 + 193*x^10 - 1167*x^8 + 1499*x^6 - 728*x^4 + 126*x^2 - 7)
 
gp: K = bnfinit(x^18 - 3*x^16 - 33*x^14 + 120*x^12 + 193*x^10 - 1167*x^8 + 1499*x^6 - 728*x^4 + 126*x^2 - 7, 1)
 

Normalized defining polynomial

\( x^{18} - 3 x^{16} - 33 x^{14} + 120 x^{12} + 193 x^{10} - 1167 x^{8} + 1499 x^{6} - 728 x^{4} + 126 x^{2} - 7 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[14, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(71020039461348097887305728=2^{18}\cdot 7^{13}\cdot 52879^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $27.30$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7, 52879$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} + \frac{2}{7} a^{10} - \frac{1}{7} a^{8} - \frac{1}{7} a^{6}$, $\frac{1}{7} a^{13} + \frac{2}{7} a^{11} - \frac{1}{7} a^{9} - \frac{1}{7} a^{7}$, $\frac{1}{7} a^{14} + \frac{2}{7} a^{10} + \frac{1}{7} a^{8} + \frac{2}{7} a^{6}$, $\frac{1}{7} a^{15} + \frac{2}{7} a^{11} + \frac{1}{7} a^{9} + \frac{2}{7} a^{7}$, $\frac{1}{162491} a^{16} - \frac{5394}{162491} a^{14} - \frac{6868}{162491} a^{12} - \frac{45653}{162491} a^{10} + \frac{57716}{162491} a^{8} + \frac{45355}{162491} a^{6} + \frac{9266}{23213} a^{4} + \frac{1266}{23213} a^{2} - \frac{366}{23213}$, $\frac{1}{162491} a^{17} - \frac{5394}{162491} a^{15} - \frac{6868}{162491} a^{13} - \frac{45653}{162491} a^{11} + \frac{57716}{162491} a^{9} + \frac{45355}{162491} a^{7} + \frac{9266}{23213} a^{5} + \frac{1266}{23213} a^{3} - \frac{366}{23213} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4752099.78188 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T768:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 82944
The 110 conjugacy class representatives for t18n768 are not computed
Character table for t18n768 is not computed

Intermediate fields

\(\Q(\zeta_{7})^+\), 9.7.6221161471.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ $18$ R ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ $18$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$7$7.6.5.2$x^{6} - 7$$6$$1$$5$$C_6$$[\ ]_{6}$
7.6.4.3$x^{6} + 56 x^{3} + 1323$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
7.6.4.3$x^{6} + 56 x^{3} + 1323$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
52879Data not computed