Normalized defining polynomial
\( x^{18} - 114 x^{16} + 4445 x^{14} - 67781 x^{12} + 509956 x^{10} - 12994356 x^{8} + 263890063 x^{6} - 2053193417 x^{4} + 5773399671 x^{2} - 3404825447 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6970034779193566051725040347250688=2^{18}\cdot 23^{9}\cdot 5569^{2}\cdot 21817^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $75.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 23, 5569, 21817$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{23} a^{6} + \frac{1}{23} a^{4} + \frac{6}{23} a^{2}$, $\frac{1}{23} a^{7} + \frac{1}{23} a^{5} + \frac{6}{23} a^{3}$, $\frac{1}{529} a^{8} + \frac{1}{529} a^{6} - \frac{201}{529} a^{4} + \frac{4}{23} a^{2}$, $\frac{1}{529} a^{9} + \frac{1}{529} a^{7} - \frac{201}{529} a^{5} + \frac{4}{23} a^{3}$, $\frac{1}{12167} a^{10} + \frac{1}{12167} a^{8} - \frac{201}{12167} a^{6} + \frac{73}{529} a^{4} + \frac{10}{23} a^{2}$, $\frac{1}{12167} a^{11} + \frac{1}{12167} a^{9} - \frac{201}{12167} a^{7} + \frac{73}{529} a^{5} + \frac{10}{23} a^{3}$, $\frac{1}{279841} a^{12} + \frac{1}{279841} a^{10} - \frac{201}{279841} a^{8} + \frac{73}{12167} a^{6} + \frac{148}{529} a^{4} + \frac{6}{23} a^{2}$, $\frac{1}{279841} a^{13} + \frac{1}{279841} a^{11} - \frac{201}{279841} a^{9} + \frac{73}{12167} a^{7} + \frac{148}{529} a^{5} + \frac{6}{23} a^{3}$, $\frac{1}{186653947} a^{14} - \frac{45}{186653947} a^{12} + \frac{3985}{186653947} a^{10} + \frac{3833}{8115389} a^{8} + \frac{1706}{352843} a^{6} + \frac{6540}{15341} a^{4} + \frac{64}{667} a^{2} + \frac{6}{29}$, $\frac{1}{186653947} a^{15} - \frac{45}{186653947} a^{13} + \frac{3985}{186653947} a^{11} + \frac{3833}{8115389} a^{9} + \frac{1706}{352843} a^{7} + \frac{6540}{15341} a^{5} + \frac{64}{667} a^{3} + \frac{6}{29} a$, $\frac{1}{21177534656346618787} a^{16} + \frac{39282958584}{21177534656346618787} a^{14} + \frac{16562474108373}{21177534656346618787} a^{12} - \frac{34540323515092}{920762376362896469} a^{10} + \frac{25664482124208}{40033146798386803} a^{8} - \frac{34337054659841}{1740571599929861} a^{6} + \frac{34901107418211}{75677026083907} a^{4} - \frac{881322211497}{3290305481909} a^{2} - \frac{14263382049}{143056760083}$, $\frac{1}{21177534656346618787} a^{17} + \frac{39282958584}{21177534656346618787} a^{15} + \frac{16562474108373}{21177534656346618787} a^{13} - \frac{34540323515092}{920762376362896469} a^{11} + \frac{25664482124208}{40033146798386803} a^{9} - \frac{34337054659841}{1740571599929861} a^{7} + \frac{34901107418211}{75677026083907} a^{5} - \frac{881322211497}{3290305481909} a^{3} - \frac{14263382049}{143056760083} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 47961359046.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 725760 |
| The 60 conjugacy class representatives for t18n913 are not computed |
| Character table for t18n913 is not computed |
Intermediate fields
| \(\Q(\sqrt{23}) \), 9.7.2794474079.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $18$ | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $23$ | 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 23.14.7.1 | $x^{14} - 24334 x^{8} + 148035889 x^{2} - 217908828608$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
| 5569 | Data not computed | ||||||
| 21817 | Data not computed | ||||||