Normalized defining polynomial
\( x^{18} - 5 x^{17} - 157 x^{16} + 486 x^{15} + 10751 x^{14} - 9911 x^{13} - 403555 x^{12} - 460550 x^{11} + 7949527 x^{10} + 25467429 x^{9} - 52542708 x^{8} - 416975522 x^{7} - 585458473 x^{6} + 1502886480 x^{5} + 7472596864 x^{4} + 13917309913 x^{3} + 14049712931 x^{2} + 7530492799 x + 1656514609 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(621490009368905226882279513578805666015625=5^{9}\cdot 7^{12}\cdot 701\cdot 2689^{2}\cdot 67346341^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $209.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 701, 2689, 67346341$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{29} a^{16} + \frac{1}{29} a^{15} + \frac{7}{29} a^{14} - \frac{10}{29} a^{13} - \frac{6}{29} a^{12} - \frac{14}{29} a^{11} - \frac{8}{29} a^{10} + \frac{1}{29} a^{9} + \frac{7}{29} a^{8} + \frac{3}{29} a^{7} + \frac{7}{29} a^{6} - \frac{14}{29} a^{5} + \frac{1}{29} a^{4} - \frac{10}{29} a^{3} + \frac{9}{29} a^{2} - \frac{7}{29} a + \frac{8}{29}$, $\frac{1}{109446360694866576830501994125239194780974167159238266963891} a^{17} + \frac{1120115804724193051290376926418847720615504070480431138749}{109446360694866576830501994125239194780974167159238266963891} a^{16} + \frac{6855243868966759511039651487188555301721755406577798377622}{109446360694866576830501994125239194780974167159238266963891} a^{15} + \frac{16735089457347722196369236298178027937177229520228225336475}{109446360694866576830501994125239194780974167159238266963891} a^{14} + \frac{47719996503179542174600815927718687933140131538000346014354}{109446360694866576830501994125239194780974167159238266963891} a^{13} + \frac{34587365443327532650731712522335251382041138118228024735046}{109446360694866576830501994125239194780974167159238266963891} a^{12} + \frac{39400861584421681918710968769021033994998843160002370676308}{109446360694866576830501994125239194780974167159238266963891} a^{11} + \frac{10302151870554962176710394243708384022134442469275337740206}{109446360694866576830501994125239194780974167159238266963891} a^{10} + \frac{38001106812074144968197799803957520531624527350714633378502}{109446360694866576830501994125239194780974167159238266963891} a^{9} - \frac{39924339201502868626985850394699195812170450262295191911447}{109446360694866576830501994125239194780974167159238266963891} a^{8} - \frac{14884051849609638600809662989744753522238641859585319059921}{109446360694866576830501994125239194780974167159238266963891} a^{7} - \frac{25380946912849399468868753489512897630408126128943064049838}{109446360694866576830501994125239194780974167159238266963891} a^{6} - \frac{26724544406002232746271578553004270117879069985077671191590}{109446360694866576830501994125239194780974167159238266963891} a^{5} + \frac{49689088577867507501387719575261127361676743298459530636733}{109446360694866576830501994125239194780974167159238266963891} a^{4} - \frac{23747215853099332964364984982464499427451128998908165613865}{109446360694866576830501994125239194780974167159238266963891} a^{3} - \frac{39843295992406061368769273099547892301869738048629879985037}{109446360694866576830501994125239194780974167159238266963891} a^{2} - \frac{49817816766584106821439297625027626955191583715100611453667}{109446360694866576830501994125239194780974167159238266963891} a - \frac{43761366134260189913842365926121567967560765820943908630194}{109446360694866576830501994125239194780974167159238266963891}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 188558726092000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 279936 |
| The 159 conjugacy class representatives for t18n857 are not computed |
| Character table for t18n857 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 6.6.300125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.6.0.1}{6} }$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | $18$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 701 | Data not computed | ||||||
| 2689 | Data not computed | ||||||
| 67346341 | Data not computed | ||||||