Normalized defining polynomial
\( x^{18} - 4 x^{17} - 68 x^{16} + 292 x^{15} + 1762 x^{14} - 8276 x^{13} - 22128 x^{12} + 118944 x^{11} + 138738 x^{10} - 948722 x^{9} - 360754 x^{8} + 4345520 x^{7} - 329114 x^{6} - 11341964 x^{5} + 4582920 x^{4} + 14427212 x^{3} - 10213556 x^{2} - 3094036 x + 2589586 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2814348094639878218243558512525312=2^{26}\cdot 19^{9}\cdot 37^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{17} a^{16} - \frac{3}{17} a^{15} + \frac{4}{17} a^{14} + \frac{3}{17} a^{13} + \frac{8}{17} a^{12} - \frac{2}{17} a^{11} - \frac{8}{17} a^{10} + \frac{7}{17} a^{9} + \frac{3}{17} a^{8} - \frac{2}{17} a^{7} + \frac{5}{17} a^{6} + \frac{5}{17} a^{5} - \frac{5}{17} a^{4} + \frac{7}{17} a^{3} - \frac{2}{17} a^{2} + \frac{5}{17} a + \frac{1}{17}$, $\frac{1}{9970350443127209264962807742385068592875789591} a^{17} - \frac{231267517314686182364794154540919691343724023}{9970350443127209264962807742385068592875789591} a^{16} - \frac{3343986911407036938714997097554611580350518174}{9970350443127209264962807742385068592875789591} a^{15} + \frac{4474070392445692178890769373057974855449923720}{9970350443127209264962807742385068592875789591} a^{14} - \frac{847042839674651698093639890963981674602405843}{9970350443127209264962807742385068592875789591} a^{13} + \frac{4150729889888131086673930035970742954531159611}{9970350443127209264962807742385068592875789591} a^{12} + \frac{4447324599419838703029108105770251117892344601}{9970350443127209264962807742385068592875789591} a^{11} + \frac{1346256668310802113951661889404154360315825105}{9970350443127209264962807742385068592875789591} a^{10} - \frac{4395803053822202473602361039730513893060512139}{9970350443127209264962807742385068592875789591} a^{9} + \frac{2132791273460957248366648897742042687843991665}{9970350443127209264962807742385068592875789591} a^{8} - \frac{4687513028732892003580444193058956379909376693}{9970350443127209264962807742385068592875789591} a^{7} - \frac{1423171375852939036401837336242078209588170291}{9970350443127209264962807742385068592875789591} a^{6} + \frac{4439384349227201696367918763264268529854966632}{9970350443127209264962807742385068592875789591} a^{5} - \frac{862803208761143923190080340176119387947890806}{9970350443127209264962807742385068592875789591} a^{4} - \frac{4315001585786044944276016548618133881244143502}{9970350443127209264962807742385068592875789591} a^{3} - \frac{3242834666637698013547071833357873678881057059}{9970350443127209264962807742385068592875789591} a^{2} + \frac{2350845338379914152302343174834744851975156276}{9970350443127209264962807742385068592875789591} a - \frac{4030083118487754736806927000535232074302108792}{9970350443127209264962807742385068592875789591}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 90433829253.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 88 conjugacy class representatives for t18n656 are not computed |
| Character table for t18n656 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.62526089134336.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | R | $18$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | $18$ | $18$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $19$ | 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.12.8.1 | $x^{12} - 114 x^{9} + 4332 x^{6} - 54872 x^{3} + 130321000$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| 37 | Data not computed | ||||||