Normalized defining polynomial
\( x^{18} - 8 x^{17} - 30 x^{16} + 304 x^{15} + 302 x^{14} - 4100 x^{13} - 1486 x^{12} + 24632 x^{11} + 4634 x^{10} - 66622 x^{9} - 4730 x^{8} + 83916 x^{7} - 4304 x^{6} - 47668 x^{5} + 7864 x^{4} + 10408 x^{3} - 2892 x^{2} - 228 x + 38 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2814348094639878218243558512525312=2^{26}\cdot 19^{9}\cdot 37^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{76506810628748919034419715827226967} a^{17} - \frac{10779269158697604410390971611046375}{76506810628748919034419715827226967} a^{16} - \frac{10479249113059930060721961457302783}{76506810628748919034419715827226967} a^{15} - \frac{1004492573866942637294714071946250}{76506810628748919034419715827226967} a^{14} + \frac{18760991041548934137352277062320045}{76506810628748919034419715827226967} a^{13} - \frac{18770046880984408783350148997616301}{76506810628748919034419715827226967} a^{12} - \frac{126597519317612170820270740466309}{76506810628748919034419715827226967} a^{11} - \frac{15065536028851122206736482720781007}{76506810628748919034419715827226967} a^{10} - \frac{33797687093514649794368111454944853}{76506810628748919034419715827226967} a^{9} + \frac{25945146807110476684343832848253586}{76506810628748919034419715827226967} a^{8} - \frac{34807263511650270969583477406342353}{76506810628748919034419715827226967} a^{7} + \frac{18789460402002699537376252616231647}{76506810628748919034419715827226967} a^{6} - \frac{15070201668840955745735394518320283}{76506810628748919034419715827226967} a^{5} - \frac{10533355236053742039535828657327997}{76506810628748919034419715827226967} a^{4} + \frac{8876116765477766280294478356018364}{76506810628748919034419715827226967} a^{3} + \frac{12796309918093524930525796370345749}{76506810628748919034419715827226967} a^{2} - \frac{28891335672348552425329352798654195}{76506810628748919034419715827226967} a + \frac{8484086388413680750296949938121697}{76506810628748919034419715827226967}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 84878703481.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 88 conjugacy class representatives for t18n656 are not computed |
| Character table for t18n656 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.62526089134336.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | $18$ | $18$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | R | $18$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.12.8.1 | $x^{12} - 114 x^{9} + 4332 x^{6} - 54872 x^{3} + 130321000$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| 37 | Data not computed | ||||||